[1] Heinonen J, Kilpeläinen T, Martio O. Nonlinear Potential Theory of Degenerate Elliptic Equations. New York:Clarendon Press, 1993
[2] Caffarelli L A. The obstacle problem revisited. J Fourier Anal Appl, 1998, 4:383-402
[3] Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. Philadelphia, PA:SIAM, 2000
[4] Friedman A. Variational Principles and Free Boundary Problems. New York:Dover, 2010
[5] Iwaniec T, Sbordone C. Weak minima of variational integrals. J Reine Angew Math, 1994, 454:143-161
[6] Lewis J L. On very weak solutions to certain elliptic systems. Comm Partial Differential Equations, 1993, 18:1515-1537
[7] Li G B, Martio O. Local and global integrability of gradients in obstacle problems. Ann Acad Sci Fenn Ser A I Math, 1994, 19:25-34
[8] Kilpeläinen T, Koskela P. Global integrability of the gradients of solutions to partial differential equations. Nonlinear Anal, 1994, 23:899-909
[9] Bao G J, Wang T T, Li G F. On very weak solutions to a class of double obstacle problems. J Math Anal Appl, 2013, 402:702-709
[10] Gianazza U, Marchi S. Interior regularity for solutions to some degenerate quasilinear obstacle problems. Nonlinear Anal, 1999, 36:923-942
[11] Marchi S. Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group. Matematiche, 2001, 56:109-127
[12] Danielli D, Garofalo N, Petrosyan A. The sub-elliptic obstacle problem:C1,α-regularity of the free boundary in Carnot groups of step two. Adv Math, 2007, 211:485-516
[13] Bigolin F. Regularity result for a class of obstacle problems in Heisenberg groups. Appl Math, 2013, 58:531-554
[14] Zatorska-Goldstein A. Very weak solutions of nonlinear subelliptic equations. Ann Acad Sci Fenn Math, 2005, 30:407-436
[15] Danielli D, Garofalo N, Phuc N C. Inequalities of Hardy-Sobolev type in Carnot-Carathéodory spaces//Maz'ya V. Sobolev Spaces in Mathematics I. Novosibirsk:Tamara Rozhkovskaya Publisher, 2009:117-151
[16] Hörmander L. Hypoelliptic second order differential equations. Acta Math, 1967, 119:147-171
[17] Chow W L. Über systeme von linearen partiellen differentialgleichungen erster ordnung. Math Ann, 1939, 117:98-105
[18] Nagel A, Stein E M, Wainger S. Balls and metrics defined by vector fields I:Basic properties. Acta Math, 1985, 155:103-147
[19] Garofalo N, Nhieu D M. Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces. J Anal Math, 1998, 74:67-97
[20] Hajlasz P, Koskela P. Sobolev Meets Poincaré. Providence, RI:American Mathematical Society, 2000
[21] Franchi B, Serapioni R, Serra Cassano F. Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields. Boll Un Mat Ital B, 1997, 11(7):83-117
[22] Lu G Z. Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. Rev Mat Iberoamericana, 1992, 8:367-439
[23] Danielli D. Regularity at the boundary for solutions of nonlinear subelliptic equations. Indiana Univ Math J, 1995, 44:269-285
[24] Lewis J L. Uniformly fat sets. Trans Am Math Soc, 1988, 308:177-196
[25] Federer H. Geometric Measure Theory. Berlin:Springer-Verlag, 1969 |