[1] Chang K C. Morse theory on Banach space and its applications to partial differential equations. Chin Ann Math Ser B, 1983, 4:381-399
[2] doÓ J M. Existence of solutions for quasilinear elliptic equations. J Math Anal Appl, 1997, 207:104-126
[3] Lindqvist P. On the equation div(|▽ u|p-2▽ u)+λ|u|p-2u=0. Proc Amer Math Soc, 1990, 109:7-164
[4] Cingolani S, Degiovanni M. Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity. Comm Partial Differential Equations, 2005, 30:1191-1203
[5] Cingolani S, Vannella G. Marino-Prodi perturbation type results and Morse indices of minimax critical points for a class of functionals in Banach space. Ann Mat Pura Appl, 2007, 186:155-183
[6] Sun M Z. Multiplicity solutions for a class of the quasilinear elliptic equations at resonance. J Math Anal Appl, 2012, 386:661-668
[7] Mugnai D, Papageorgiou N S. Wang's multiplicity result for superlinear (p,q)-equations without the Ambrosetti-Rabinowitz condition. Trans Amer Math Soc, 2014, 366:4919-4937
[8] Lam N, Lu G Z. N-Laplacian equations in RN with subcritical and critical growth without the Ambrosetti-Rabinowitz condition. Adv Nonlinear Stud, 2013, 13:289-308
[9] Liu Z L, Wang Z Q. On the Ambrosetti-Rabinowitz superlinear condition. Adv Nonlinear Stud, 2004, 4:563-574
[10] Trudinger N S. On imbeddings in to Orlicz spaces and some applications. J Math Mech, 1967, 17:473-483
[11] Moser J. A sharp form of an inequality by N. Trudinger. Indiana Univ Math J, 1971, 20:1077-1092
[12] Chang K C. Infinite Dimensional Morse Theory and Multiple Solutions Problems. Boston:Birkhäuser, 1993
[13] Bartsch T, Li S J. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance. Nonlinear Anal, 1997, 28:419-441
[14] Sun J J, Ma S W. Nontrivial solutions for Kirchhoff type equations via Morse theory. Discrete Contin Dyn Syst, 2014, 13:483-494
[15] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equation of Second Order. Berlin:Springer-Verlag, 1998
[16] Liu J Q. The Morse index of a saddle point. Syst Sci Math Sci, 1989, 2:32-39
[17] Liu S B. Nontrivial solutions for elliptic resonant problems. Nonlinear Anal, 2009, 70:1965-1974 |