数学物理学报 ›› 2017, Vol. 37 ›› Issue (1): 92-101.

• 论文 • 上一篇    下一篇

一类超线性(p,2)-拉普拉斯Dirichlet问题的非平凡解

裴瑞昌1, 张吉慧2, 马草川1   

  1. 1. 天水师范学院数学与统计学院 甘肃天水 741001;
    2. 南京师范大学数学科学学院 南京 210097
  • 收稿日期:2016-03-09 修回日期:2016-10-27 出版日期:2017-02-26 发布日期:2017-02-26
  • 作者简介:裴瑞昌,E-mail:prc211@163.com
  • 基金资助:

    国家自然科学基金(11661070,11571176)、甘肃省自然科学基金(1506RJZE114,1606RJYE237)和甘肃省高等学校科研基金(2015A-129,2015A-131)

Nontrivial Solutions for a Class of Superlinear (p, 2)-Laplacian Dirichlet Problems

Pei Ruichang1, Zhang Jihui2, Ma Caochuan1   

  1. 1. School of Mathematics and Statistics, Tianshui Normal University, Gansu Tianshui 741001;
    2. Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210097
  • Received:2016-03-09 Revised:2016-10-27 Online:2017-02-26 Published:2017-02-26
  • Supported by:

    Supported by the NSFC (11661070, 11571176), the Natural Science Foundation of Gansu Province (1506RJZE114, 1606RJYE237) and the Scientific Research Foundation of the Higher Education Institutions of Gansu Province (2015A-129, 2015A-131)

摘要:

该文研究了一类特殊的(p,2)-拉普拉斯Dirichlet问题,非线性项在无穷远处是超线性但不满足Ambrosetti-Rabinowitz条件.当2 < p < N时,利用Morse理论建立了一些一般情形下非平凡解的存在性结果.当p=N时,利用Morse理论与Moser-Trudinger不等式得到了类似的结论.

关键词: (p, 2)-拉普拉斯Dirichlet问题, Morse理论, 次临界指数型增长, 改进型次临界多项式增长

Abstract:

In this paper, we consider a class of particular (p,2)-Laplacian Dirichlet problem with nonlinearity which is superlinear but does not satisfy the Ambrosetti-Rabinowitz condition at infinity. Some existence results for nontrivial solution are established by Morse theory in the general case 2 < p < N and similar results are also established by combining Morse theory with Moser-Trudinger inequality when p=N.

Key words: (p,2)-Laplacian Dirichlet problem, Morse theory, Subcritical exponential growth, Improved subcritical polynomial growth

中图分类号: 

  • O175.23