数学物理学报 ›› 2017, Vol. 37 ›› Issue (1): 82-91.

• 论文 • 上一篇    下一篇

具有适型分数阶导数的边值问题的正解

董晓玉, 白占兵, 孙苏菁   

  1. 山东科技大学数学与系统科学学院 山东青岛 266590
  • 收稿日期:2016-05-13 修回日期:2016-11-07 出版日期:2017-02-26 发布日期:2017-02-26
  • 作者简介:白占兵,E-mail:zhanbingbai@163.com
  • 基金资助:

    国家自然科学基金(11571207)、泰山学者项目和山东科技大学研究生科技创新项目(SDKDYC 170343)

Positive Solutions for Some Boundary Value Problems with Conformable Fractional Differential Derivatives

Dong Xiaoyu, Bai Zhanbing, Sun Sujing   

  1. Department of Mathematics, College of Mathematics and System Science, Shandong University of Science and Technology, Shondong Qingdao 266590
  • Received:2016-05-13 Revised:2016-11-07 Online:2017-02-26 Published:2017-02-26
  • Supported by:

    Supported by the NSFC (11571207), the Taishan Scholar Project and SDUST Graduate Innovation Project (SDKDYC 170343)

摘要:

该文研究一类非线性分数阶微分方程边值问题Dαu(t)+f(t,ut))=0,0 < t < 1,u(0)=u(1)=0的可解性,其中1 < α ≤ 2是实数,Dα是适型分数阶导数,f:[0,1]×[0,∞)→[0,∞)是连续函数.研究的难点之一是相应的Green函数Gt,s)在s=0处是奇异的.利用逼近法和锥上的不动点定理,得到了正解的存在性和多解性.

关键词: 适型分数阶导数, 奇异Green函数, 锥上不动点定理

Abstract:

In this paper, we establish the solvability of a class nonlinear fractional differential equation boundary value problem Dαu(t)+f(t, u(t))=0, 0 < t < 1, u(0)=u(1)=0, where 1 < α ≤ 2 is a real number, Dα is the conformable fractional derivative, and f:[0, 1]×[0, ∞)→[0, ∞) is a continuous function. One of the difficulty here is the corresponding Green's function G(t, s) is singular at s=0. By the use of approach method and fixed-point theorems on cone, some existence and multiplicity results of positive solutions are acquired.

Key words: Conformable fractional derivative, Singular Green's function, Fixed-point theorems on cone

中图分类号: 

  • O175.08