[1] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical exponents. Comm Pure Appl Math, 1983, 36:437-447
[2] Cao D M, Han P G. Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J Differential Equations, 2004, 205:521-537
[3] Cao D M, Peng S J. A global compactness result for singular elliptic problems involving critical Sobolev exponent. Proc Amer Math Soc, 2003, 131:1857-1866
[4] 丁凌, 唐春雷. 具有Hardy项和Hardy-Sobolev临界指数半线性椭圆方程的多个正解. 西南大学学报(自然科学版), 2008, 30:27-31 Ding L, Tang C L. Multiple positive solutions for semilinear elliptic equations involving Hardy terms and Hardy-Sobolev critical exponents. J Southwest Univer (Natural Sci Ed), 2008, 30:27-31
[5] Florin C, Wang Z Q. On the Caffearelli-Kohn-Nirenberg inequalities:sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun Pure Appl Math, 2001, 54:229-258
[6] Kang D S. Solutins for semilinear elliptic problems with critical Sobolev Hardy exponents in RN. Nonlinear Anal, 2007, 66:241-252
[7] Kang D S, Deng Y B. Existence of solution for a singular critical elliptic equation. J Math Anal Appl, 2003, 284:724-732
[8] Kang D S, Peng S J. Existence of solutions for elliptic with critical Sobolev Hardy exponents. Nonlinear Anal, 2004, 56:1151-1164
[9] Kang D S, Luo J, Shi X L. Solutions to elliptic systems involving doubly critical nonlinearities and Hardy-type potentials. Acta Math Sci, 2015, 35:423-438
[10] Lions P L. The concentration-compactness principle in the calculus of variations, the limit case I. Revista Matematica Iberoamericana, 1985, 1:145-201
[11] Smets D. Nonlinear Schrodinger equations with Hardy potential and critical nonlinearities. Trans Amer Math Soc, 2005, 357:2909-2938
[12] 张正杰, 张莹. RN上拟线性椭圆型方程两个非负解的存在性. 数学物理学报. 2015, 35A}(2):225-233 Zhang Z J, Zhang Y. Two non-negative solutions of a quasilinear elliptic equation on RN. Acta Math Sci, 2015, 35A}(2):225-233 |