[1] Essén M, Jackson H L. On the covering properties of certain exceptional sets in a half-space. Hiroshima Math J, 1980, 10(2):233-262
[2] Aikawa H, Essén M. Potential Theory-Selected Topics. Berlin:Springer-Verlag, 1996
[3] Miyamoto I, Yoshida H. On a covering property of rarefied sets at infinity in a cone. Advanced Studies in Pure Mathematics, 2006, 44:233-244
[4] Essén M, Jackson H L, Rippon P J. On minimally thin and rarefied sets in Rp, p ≥ 2. Hiroshima Math J, 1985, 15:393-410
[5] Qiao L. Some Researches on(Generalized) Harmonic and Superharmonic Functions[D]. Beijng:Beijing Normal University, 2010
[6] Qiao L, Deng G T. A theorem of Phragmén Lindelöf type for subfunctions in a cone. Glasg Math J, 2011, 53(3):599-610
[7] Qiao L, Deng G T. Integral representation for the solution of the stationary Schrodinger equation in a cone. Math Nachr, 2012, 285(16):2029-2038
[8] Qiao L, Deng G T. Dirichlet problem for the Schrodinger operator on a cone. Bound Value Probl, 2012, Article ID:59
[9] Qiao L, Su B Y, Deng G T. Growth properties for the solutions of the stationary Schrodinger equation in a cone. Taiwanese J Math, 2012, 16(5):1733-1748
[10] Long P H, Han H L. Behavior at infinity for nonnegative superfunctions in a cone. Journal of Mathematical Research with Applications, 2015, 35}(4):407-416
[11] Kheyfits A. Dirichlet problem for the Schrödinger operator in a half-space with boundary data of arbitrary growth at infinity. Differential Integral Equations, 1997, 10:153-164
[12] Levin B, Kheyfits A. Asymptotic behavior of subfunctions of the stationary Schrödinger operator. 2002, arxiv:math/0211328v1
[13] Long P H, Gao Z Q, Deng G T. Criteria of Wiener type for minimally thin sets and rarefied sets associated with the stationary Schrödinger operator in a cone. Abstract and Applied Analysis, 2012, Article ID:453891
[14] Miyamoto I, Yoshida H. Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone. J Math Soc Japan, 2002, 54(3):487-512
[15] Azarin V S. Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Amer Math Soc Translation, 1969, 80(2):119-138
[16] Reed M, Simon B. Methods of Modern Mathematical Physics:III. London:Acad Press, 1979
[17] Rosenblum G, Solomyak M, Shubin M. Spectral Theory of Differential Operators. Moscow:VINITI, 1989
[18] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin:Springer Verlag, 1977
[19] Verzhbinskii G M, Maz'ya V G. Asymptotic behavior of solutions of elliptic equations of the second order close to a boundary, I. Sibirsk Math J, 1971, 12(6):874-899
[20] Simon B. Schrödinger semigroups. Bull Amer Math Soc, 1982, 7:447-526
[21] Armitage D H, Gardiner S J. Classical Potential Theory. London:Springer-Verlag, 2001
[22] Miyamoto I, Yoshida H. On a-minimally thin sets at infinity in a cone. Hroshma Math J, 2007, 37:61-80 |