[1] Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations. Berlin:Springer-Verlag, 1986
[2] Chen Z X. Finite Element Methods and Their Applications. Heidelberg:Springer-Verlag, 2005
[3] Breezzi F, Pitkäranta J. On the stabilization of finite element approximations of the Stokes problems//Hackbusch W, ed. Notes on Numerical Fluid Mechanics. Wiesbaden:Vieweg, 1984
[4] Hughes J, Franca L, Balesra M. A new finite element formulation for computational fluid dynamics:V. Circunventing the Babuska-Brezzi condition:a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Meth Appl Mech Engrg, 1986, 59:85-99
[5] Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem. Numer Math, 1988, 53:225-235
[6] Franca L, Stenberg R. Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J Numer Anal, 1991, 28:1680-1697
[7] Hughes J, Franca L. A new finite element formulation for computational fluid dynamics:VⅡ. The Stokes problem with various well-posed boundary conditions:Symmetric formulations that converge for all velocity/pressure spaces. Comput Meth Appl Mech Engrg, 1987, 65:85-96
[8] Kechar N, Silvester D. Analysis of a locally stabilized mixed finite element method for the Stokes problem. Math Comp, 1992, 58:1-10
[9] Tobiska L, Verfürth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J Numer Anal, 1996, 58:107-127
[10] Bochev P B, Dohrmann C R, Gunzburger M D. Stabilized of low-order mixed finite elements for the Stokes equations. SIAM J Numer Anal, 2006, 44:82-101
[11] He Y N, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations. Appl Numer Math, 2008, 58:1503-1514
[12] Li J, He Y N. A new stabilized finite element method for the transient Navier-Stokes equations. Comput Meth Appl Mech Engrg, 2007, 197:22-35
[13] Burman E, Fernández M, Hansbo P. Edge stabilization for the incompressible Navier-Stokes equations:A continuous interior penalty finite element method:Tech Report RR-5349. Le Chesnay, France:INRIA, 2004
[14] Burman E, Hansbo P. A unified stabilized method for Stokes' and Darcy's equations. J Comput Appl Math, 2007, 198(1):35-51
[15] Barrenechea G, Valentin F. An unusual stabilized finite element method for a generalized Stokes problem. Numer Math, 2002, 20:653-677
[16] Baiocchi C, Breezi F, Franca L. Virtual bubbles and Galerkin-least-squares type methods. Comput Meth Appl Mech Engrg, 1993, 105:125-141
[17] Russo A. Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Comput Meth Appl Mech Engrg, 1996, 132:335-343
[18] Franca L, Russo A. Approximation of the Stokes problem by residual-free macro bubbles. East-West J Numer Math, 1996, 4:265-278
[19] Wen J, He Y N. Convergence analysis of a new multiscale finite element method for the stationary Navier-Stokes problem. Computers & Mathematics with Applications, 2014, 67:1-25
[20] Araya R, Barrenechea G R, Valentin F. Stabilized finite element method based on multiscale enrichment for the Stokes problem. SIAM J Numer Anal, 2006, 44:322-348
[21] Ge Z H, Yan J J. Analysis of multiscale finite element method for stationary Navier-Stokes equations. Nonlinear Anal RWA, 2012, 13:385-394
[22] Barrenechea G, Valentin F. Consistent local projection stabilized finite element methods. SIAM J Numer Anal, 2010, 48:1801-1825
[23] Araya R, Barrenechea G R, Abner H P, Valentin F. Convergence analysis of a residual local projection finite element method for the Navier-Stokes equations. SIAM J Numer Anal, 2012, 50:669-699
[24] He Y N, Li J, Yang X Z. Two-level penalized finite element methods for the stationary Navier-Stokes equations. Int J Inf Syst Sci, 2006, 2:131-143
[25] Carey G F, Krishnan R. Penalty finite element method for the Navier-Stokes equations. Comput Meth Appl Mech Engrg, 1984, 142:183-224
[26] Douglas J, Wang J P. An absolutely stabilized finite element method for the Stokes problem. Math Comput, 1989, 52:495-508
[27] Tobiska L, Verfürth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J Numer Anal, 1996, 33:107-127
[28] Silvester D. Stabilized mixed finite element methods. Numerical Analysis Report, 262. Manchester:Univer of Manchester, 1995
[29] Li J, Shen L H, Chen Z X. Convergence and stability finite volume method for the stationary Navier-Stokes equations. BIT Numer Math, 2010, 50:823-842
[30] Li J, He Y N, Chen Z X. Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs. Computing, 2009, 86:37-51
[31] Huang P Z, He Y N, Feng X L. Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem. Math Probl Eng, 2011, 2011:1-14
[32] Bochev P, Dohrmann C. A computational study of stabilized, low-order C^0 finite element approximations of Darcy equations. Comput Mech, 2006, 38:323-333
[33] Harari I, Magoules F. Numerical investigations of stabilized finite element computations for acoustics. Wave Motion, 1988, 39:1-21
[34] Temam R. Navier-Stokes Equations. Amsterdam:North-Holland, 1984
[35] Ern A, Guermond J L. Theory and Practice of Finite Element. New York:Springer-Verlag, 2004
[36] Brefort B, Ghidaglia J M, Temam R. Attractor for the penalty Navier-Stokes equations. SIAM J Math Anal, 2006, 19:323-333
[37] Falk R. An analysis of the penalty method and extrapolation for the stationary Stokes equations//Vich-nevetsky R, ed. Advances in Computer Methods for Partial Differential Equations. New Brunswick:Rutgers Univ, 1975:66-99
[38] Freefem++:version 3.13.3[EB/OL].[2012-01-24]. http://www.freefem.org/
[39] Li J, Mei L Q, He Y N. A pressure-Poisson stabilized finite element method for the non-stationary Stokes equations to circumvent the inf-sup condition. Appl Math Comput, 2006, 182:24-35
[40] Ghia G, Ghia K N, Shin C T. High-resolution for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys, 1982, 48:387-411
[41] Gravemeier V, Wall W A, Ramm E. A three-level finite element method for the instationary incompressible Navier-Stokes equations. Compt Meth Appl Mech Eng, 2004, 193:1323-1366
[42] Franca L P, Nesliturk A. On a two-level finite element method for the incompressible Navier-Stokes equations. Internat J Numer Methods Engrg, 2001, 52:433-453
[43] Masud A, Khurram R A. A multiscale finite element method for the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng, 2006, 195:1750-1777
[44] Morgan K, Periaux J, Thomasset F. Analysis of Laminar Flow over a Backward Facing Step:A GAMM Workshop. Wiesbaden:Viewig, 1984 |