[1] Aassila M. The influence of nonlocal nonlinearities on the long time behavior of solutions of diffusion problem. J Differential Equations, 2003, 192:47-69
[2] Bebernes J, Eberly D. Mathematical Problems From Combustion Theory. New York:Springer, 1989
[3] Bebernes J, Bressan A. Thermal behavior for a confined reactive gas. J Differential Equations, 1982, 44:118-113
[4] Sacks P E. Continuity of solutions of a singular parabolic equation. Nonl Anal, 1993, 7:387-409
[5] Li F C, Xie C H. Global existence and blow-up for a nonlinear porous medium equation. Appl Math Letters, 2003, 16:185-192
[6] Yamna B, Benyattou B. Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions. Nonl Anal, 2014, 97:191-209
[7] Wu S T. Exponential decay for a nonlinear viscoelastic equation with singular kernals. Acta Math Sci, 2012, 32B(6):2237-2246
[8] Sabinina E S. On a class of nonlinear degenerate parabolic equation. Dolk Akad Nauk SSSR, 1962, 143:794-797
[9] Friedman A, Herrero M A. Extinction properties of semilinear heat equation with strong absorption. J Math Anal Appl, 1987, 124:530-546
[10] Herrero M A, Velazquez J J L. Approaching an extinction point in one-dimensional semilinear heat equations with strong absorptions. J Math Anal Appl, 1992, 170:353-381
[11] Kalashnikov A S. The nature of the propagation of perturbations in problems of non-linear heat conduction with absorption. USSR Comp Math Math Phys, 1974, 14:70-85
[12] Kalashnikov A S. Some problems of the qualitative theory of second order nonlinear degenerate parabolic equations. Uspekhi Mat Nauk, 1987, 42:135-176
[13] Gu Y G. Necessary and sufficient conditions of extinction of solution on parabolic equations. Acta Math Sinica (in Chinese), 1994, 37:73-79
[14] Galaktionov V A, Vazquez J L. Asymptotic behavior of nonlinear parabolic equations with critical exponents, dynamical system approach. J Funct Anal, 1991, 100:435-462
[15] Galaktionov V A, Vazquez J L. Extinction for a quasilinear heat equation with absorption I, technique of intersection comparison. Comm Partial Differential Equations, 1994, 19:1075-1106
[16] Galaktionov V A, Vazquez J L. Extinction for a quasilinear heat equation with absorption Ⅱ, a dynamical system approach. Comm Partial Differential Equations, 1994, 19:1107-1137
[17] Li Y X, Wu J C. Extinction for fast diffusion equations with nonlinear sources. Electron J Differential Equations, 2005, Article ID:23
[18] Peletier L A, Zhao J N. Large time behavior of solution of the porous media equation with absorption:The fast diffusion case. Nonlinear Anal, 1990, 14:107-121
[19] Peletier L A, Zhao J N. Source-type solutions of the porous media equation with absorption:the fast diffusion case. Nonlinear Anal, 1991, 17:991-1009
[20] Tian Y, Mu C L. Extinction and non-extinction for a p-laplacian equation with nonlinear source. Nonlinear Anal, 2008, 69:2422-2431
[21] Ferreira R, Vazquez J L. Extinction behavior for fast diffusion equations with absorption. Nonlinear Anal, 2001, 43:943-985
[22] Yin J X, Li J, Jin C H. Non-extinction and critical exponent for a polytropic filtration equation. Nonlinear Anal, 2009, 71:347-357
[23] Yin J X, Jin C H. Critical extinction and blow-up exponets for fast diffusive polytropic filtration equation with sources. Proc Edinburgh Math Soc, 2009, 52:419-444
[24] Yin J X, Jin C H. Critical extinction and blow-up exponets for fast diffusive p-Laplacian with sources. Math Method Appl Sci, 2007, 30:1147-1167
[25] Yuan H J. Extinction and positive for the evolution p-Laplacian equation in RN. Nonlinear Anal TMA, 2005, 60:1085-1091
[26] Liu W J, Wang M X, Wu B. Extinction and decay estimate of solutions for a class of porous medium equations. J Inequal Appl, 2007, Article ID:87650
[27] Wang M, Wang Y. Properties of positive solutions for non-local reaction-diffusion problems. Math Methods Appl Sci, 1996, 19:1141-1156
[28] Liu W J. Extinction properties of solutions for a class of fast diffusive p-Laplacian equation. Nonlinear Anal, 2011, 74:4520-4532
[29] Liu W J, Wu B. A note on extinction for fast diffusive p-Laplacian with sources. Math Meth Appl Sci, 2008, 31:1383-1386
[30] Han Y Z, Gao W J. Extinction for a fast diffusion equation with a nonlinear nonlocal source. Arc Math, 2011, 97:353-363
[31] Chen S L. The extinction behavior of the solutions for a class of reaction-diffusion equations. Appl Math Mech (English Ed), 2011, 22(11):1352-1356
[32] Anderson J R. Local existence and uniqueness of degenerate parabolic equations. Comm Partial Differential Equations, 1991, 16:105-143
[33] Anderson J R, Deng K. Global existence for degenerate parabolic equations with a nonlocal forcing. Math Meth Appl Sci, 1997, 20:1069-1087
[34] DiBenedetto E. Degenerate Parabolic Equations. New York:Spribger-Verlag, 1993 |