数学物理学报 ›› 2016, Vol. 36 ›› Issue (1): 90-116.

• 论文 • 上一篇    下一篇

与Full-Laplacian算子相关的波方程的色散估计和Strichartz估计

宋乃琪1,2, 赵纪满1   

  1. 1 北京师范大学数学科学学院 北京 100875;
    2 北京中医药大学中药学院 北京 100029
  • 收稿日期:2015-08-13 修回日期:2015-12-16 出版日期:2016-02-25 发布日期:2016-02-25
  • 通讯作者: 赵纪满,jzhao@bnu.edu.cn E-mail:jzhao@bnu.edu.cn
  • 作者简介:宋乃琪,songnaiqi2007@126.com
  • 基金资助:

    国家自然科学基金(11471040)及中央高校基本科研业务费专项资金(2014KJJCA10)资助

Strichartz Estimates for the Wave Equation with the Full-Laplacian on the Quaternion Heisenberg Group

Song Naiqi1,2, Zhao Jiman1   

  1. 1 School of Mathematical Sciences, Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing 100875;
    2 School of Chinese medicine, Beijing University of Chinese Medicine, Beijing 100029
  • Received:2015-08-13 Revised:2015-12-16 Online:2016-02-25 Published:2016-02-25
  • Supported by:

    Supported by the NSFC (11471040) and the Fundamental Research Funds for the Central Universities (2014KJJCA10)

摘要:

该文研究了四元数海森堡群上与full-Laplacian算子相关的波方程的解的估计.通过研究四元数海森堡群上的full-Laplacian算子,得到了该算子的一些重要性质和四元数海森堡群上的Littlewood-Paley理论.讨论了四元数海森堡群上一些重要的函数空间的性质.得到了波方程的解的色散估计和Strichartz估计.

关键词: 四元数海森堡群, Littlewood-Paley 理论, 齐次Besov 空间, 齐次Sobelev 空间, 色散估计, Strichartz估计

Abstract:

In this article, we prove dispersive and Strichartz estimates for the solution of the wave equation related to the full-Laplacian on the quaternion Heisenberg group, by means of homogeneous Besov space defined by a Littlewood-Paley decomposition related to the full-Laplacian.

Key words: Quaternion Heisenberg group, Full-Laplacian, Littlewood-Paley decomposition, Homogeneous Besov space, Dispersive estimates, Strichartz estimates

中图分类号: 

  • O152.5