[1] Zhang X, Chen L. The periodic solution of a class of epidemic models. Comput Math Appl, 1999, 38(3/4):61-71
[1] Mackey M C, Glass L. Oscillations and chaos in physiological control systems. Sciences, 1977, 197:287-289
[2] Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications. Oxford:Clarendon, 1991
[3] Yang X. Existence and global attractivity of unique positive almost periodic solution for a model of hematopoiesis. Appl Math J Chinese Univ, 2010, 25(1):25-34
[4] Alzabut J O, Nieto J J, Stamov G T. Existence and exponential stability of positive almost periodic solutions for a model of hematopoiesis. Bound Value Probl, 2009, 127510:1-10
[5] Zhang H, Wang L, Yang M. Existence and exponential convergence of the positive almost periodic solution for a model of hematopoiesis. Appl Math Lett, 2013, 26:38-42
[6] Chen Z. Global exponential stability of positive almost periodic solutions for a model of hematopoiesis. Kodai Math J, 2014, 37(2):334-345
[7] Liu B. New results on the positive almost periodic solutions for a model of hematopoiesis. Nonlinear Anal Real World Appl, 2014, 17:252-264
[8] Meng J. Global exponential stability of positive pseudo almost periodic solutions for a model of hematopoiesis. Abstr Appl Anal, 2013, 15(2):239-263
[9] Zhang H. New results on the positive pseudo almost periodic solutions for a generalized model of hematopoiesis. Electron J Qual Theory Differ Equ, 2014, 24:1-10
[10] Berezansky L, Braverman E. On exponential stability of a linear delay differential equation with an oscillating coefficient. Appl Math Lett, 2009, 22:1833-1837
[11] Zhang C. Almost Periodic Type Functions and Ergodicity. Beijing:Science Press, 2003
[12] Fink A M. Almost periodic differential equations//Lecture Notes in Mathematics, 377. Berlin:Springer, 1974
[13] Smith H L. Monotone Dynamical Systems. Providence, RI:Amer Math Soc, 1995
[14] Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations. New York:Springer-Verlag, 1993
[15] Zhang C. Pseudo almost periodic solutions of some diffe rential equations II. J Math Anal Appl, 1995192:543-561
[16] Hale J K. Ordinary Differential Equations. Malabar, Florida:Krieger, 1980 |