数学物理学报 ›› 2015, Vol. 35 ›› Issue (4): 756-768.

• 论文 • 上一篇    下一篇

END随机变量序列产生的移动平均过程的收敛性

邱德华1, 陈平炎2   

  1. 1 广东财经大学数学与统计学院, 广州 510320;
    2 暨南大学数学系, 广州 510630
  • 收稿日期:2014-07-10 修回日期:2015-02-12 出版日期:2015-08-25 发布日期:2015-08-25
  • 作者简介:邱德华, qiudhua@sina.com;陈平炎, tchenpy@jnu.edu.cn
  • 基金资助:

    国家自然科学基金(61300204,11271161)资助

large Convergence for Moving Average Processes Under END Set-up

Qiu Dehua1, Chen Pingyan2   

  1. 1 School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou 510320;
    2 Department of Mathematics, Jinan University, Guangzhou 510630
  • Received:2014-07-10 Revised:2015-02-12 Online:2015-08-25 Published:2015-08-25

摘要:

设{Yn,-∞< n< +∞}是双向无穷的END随机变量序列(不必同分布), {an,-∞< n< +∞}是绝对可和的实常数序列, 该文利用END列的Rademacher-Menshov型矩不等式, 得到了移动平均过程Xn=ai Yi+n,n≥部分和的最大值的完全收敛性和矩完全收敛性. 所得结果推广和改进了已知的相应的一些结果.

关键词: 完全收敛, 矩完全收敛, END随机变量, 移动平均过程

Abstract:

Let {Yn,-∞< n< +∞} be a doubly infinite sequence of non-identically distributed extended negatively dependent (END) random variables, {an,-∞< n< +∞} an absolutely summable sequence of real numbers. Utilizing the Rademacher-Menshov's inequality of END random variables, the complete convergence and complete moment convergence of the maximal partial sums of moving average processes Xn=ai Yi+n,n≥ are obtained, the corresponding results in series of previous papers are enriched and extended.

Key words: Complete convergence, Complete moment convergence, END random variable, Moving average process

中图分类号: 

  • O211.4