[1] Ibragimov I A. Some limit theorem for stationary processes. Theory Probab Appl, 1962, 7: 349-382
[2] Burton R M, Dehling H. Large deviations for some weakly dependent random processes. Statist Probab Lett, 1990, 9: 397-401
[3] Li D L, Rao M B, Wang X C. Complete convergence of moving average processes. Statist Probab Lett, 1992, 14: 111-114
[4] Chen P Y, Wang D C. Convergence rates for probabilities of moderate deviations for moving average processes. Acta Math Sin (Eng Ser), 2008, 24(4): 611-622
[5] 陈平炎, 管总平. 阵列滑动和的强收敛性. 数学物理学报, 2010, 30A(6): 1394-1401
[6] 李云霞, 李坚高. 由随机过程序列产生的滑动平均过程部分和的弱收敛. 数学学报, 2004, 47(5): 873-884
[7] Zhang L. Complete convergence of moving average processes under dependence assumptions. Statist Probab Lett, 1996, 30: 165-170
[8] Chen P Y, Hu T C, Volodin A. Limiting behavior of moving average processes under φ-mixing assumption. Statist Probab Lett, 2009, 79: 105-111
[9] 李炜, 甘师信. 重尾随机变量序列滑动平均和的极限性质. 数学物理学报, 2013, 33A(4): 787-792
[10] Chow Y S. On the rate of moment complete convergence of sample sums and extremes. Bull Inst Math Acad Sin, 1988, 16: 177-201
[11] Li Y X, Zhang L X. Complete moment convergence of moving average processes under dependence assumptions. Statist Probab Lett, 2004, 70: 191-197
[12] Kim T S, Ko M H. Complete moment convergence of moving average processes under dependence assumptions. Statist Probab Lett,2008, 78: 839-846
[13] Zhou X C. Complete moment convergence of moving average processes under φ-mixing assumptions. Statist Probab Lett, 2010, 80: 285-292
[14] Chen P Y, Hu T H, Volodin A. Limiting behaviour of moving average processes under negative association assumption. Theory Probab Math Statist (Teor Imovir ta Matem Statyst), 2007, 77: 154-166
[15] 陈平炎, 李远梅. 鞅差序列滑动和过程的极限结果. 数学物理学报, 2011, 31A(1): 179-187
[16] 张立新, 王江峰. 两两NQD列的完全收敛性的一个注记. 高校应用数学学报A辑, 2004, 19(2): 203-208
[17] Liu L. Precise large deviations for dependent random variables with heavy tails. Statist Probab Lett, 2009, 79(9): 1290-1298
[18] Joag-Dev K, Proschan F. Negative association of random variables with applications. Ann Statist, 1983, 11(1): 286-295
[19] Liu L. Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails. Sci China Ser A, 2010, 53(6): 1421-1434
[20] Shen A T. Probability inequalities for END sequence and their applications. J Inequal Appl, 2011, DOI: 10.1186/1029-242X-2011-98
[21] Qiu D H, Chen P Y, Antonini R G, et al. On the complete convergence for arrays of rowwise extended negatively dependent random variables. J Korean Math Soc, 2013, 50(2): 379-392
[22] Wu Y F, Guan M. Convergence properties of the partial sums for sequences of END random variables. J Korean Math Soc, 2012, 49: 1097-1110
[23] Wang X J, Hu S H, Hu T C. Complete convergence for weighted sums and arrays of rowwise END sequences. Comm Statist Theory Methods, 2013, 42: 2391-2401
[24] Stout W F. Almost Sure Convergence. New York: Academic Press, 1974 |