[1] Benci V, Fortunato D. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11: 283-293
[2] D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134: 893-906
[3] Alves C O, Souto M A S, Soares S H M. Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition. J Math Anal Appl, 2011, 377: 584-592
[4] Ambrosetti A, Ruiz D. Multiple bound states for the Schröldinger-Poisson problem. Commun Contemp Math, 2008, 10: 391-404
[5] Ambrosetti A. On Schrödinger-Poisson systems. Milan J Math, 2008, 76: 257-274
[6] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345: 90-108
[7] Azzollini A, d'Avenia P, Pomponio A. On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann Inst H PoincaréAnal Non Linéaire, 2010, 27: 779-791
[8] Cerami G, Vaira G. Positive solutions for some non-autonomous Schrödinger-Poisson systems. J Differential Equations, 2010, 248: 521-543
[9] Coclite G M. A multiplicity result for the nonlinear Schrödinger-Maxwell equations. Commun Appl Anal, 2003, 7: 417-423
[10] Chen S, Tang C. High energy solutions for the superlinear Schrödinger-Maxwell equations. Nonlinear Anal, 2009, 71: 4927-4934
[11] Chen P, Tian C. Infinitely many solutions for Schrödinger-Maxwell equations with indefinite sign subquadratic potentials. Appl Math Comput, 2014, 226: 492-502
[12] Jiang Y, Wang Z, Zhou H. Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in R3. Nonlinear Anal, 2013, 83: 50-57
[13] Li Q, Su H, Wei Z. Existence of infinitely many large solutions for the nonlinear Schrödinger-Maxwell equations. Nonlinear Anal, 2010, 72: 4264-4270
[14] Liu Z, Guo S. On ground state solutions for the Schrödinger-Poisson equations with critical growth. J Math Anal Appl, 2014, 412:435-448
[15] Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237: 655-674
[16] Sun J, Chen H, Nieto J J. On ground state solutions for some non-autonomous Schrödinger-Poisson systems. J Differential Equations, 2012, 252: 3365-3380
[17] Sun J. Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations. J Math Anal Appl, 2012, 390: 514-522
[18] Wang Z, Zhou H S. Positive solution for a nonlinear stationary Schrödinger-Poisson system in R3. Discrete Contin Dyn Syst, 2007, 18: 809-816
[19] Yang M, Han Z. Existence and multiplicity results for the nonlinear Schrödinger-Poisson systems. Nonlinear Anal Real World Appl, 2012, 13: 1093-1101
[20] Zhang J. On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth. Nonlinear Anal, 2012, 75: 6391-6401
[21] Zhao L, Liu H, Zhao F. Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J Differential Equations, 2013, 255: 1-23
[22] Zhao L, Zhao F. On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346: 155-169
[23] Zhao L, Zhao F. Positive solutions for Schrödinger-Poisson equations with a critical exponent. Nonlinear Anal, 2009, 70: 2150-2164
[24] Bartsch T, Wang Z, Willem M. The Dirichlet problem for superlinear elliptic equations. Stationary Partial Differential Equations, 2005, 2: 1-55
[25] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 2001
[26] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence RI: American Mathematical Society, 1986
[27] Willem M. Minimax Theorems. Boston: Birkhäuser, 1996
[28] Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. New York: Springer-Verlag, 1989
[29] Kajikiya R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J Funct Anal, 2005, 225: 352-370 |