[1] Aissa Guesmia. Energy decay for a damped nonlinear coupled system. Journal of Mathematical Analysis and Applications,
1999, 239: 38--48
[2] Han X S, Wang M X. Energy decay rate for a coupled hyperbolic system with nonlinear damping. Nonlinear Analysis, 2009, 70: 3264--3272
[3] Aissa Guesmia, Salim A Messaoudi. General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math Meth Appl Sci, 2009, 32: 2102--2122
[4] Han X S, Wang M X. General decay of energy for a viscoelastic equation with nonlinear damping. Math Meth Appl Sci, 2009, 32: 346--358
[5] Liu K S, Liu Z Y. On the type of $C_{0}$-semigroup associated with the abstract linear viscoelastic system. Z Angew Math Phys, 1996, 47(2): 1--15
[6] Liu K S, Liu Z Y. Exponential decay of energy of vibrating strings with local viscoelasticity. Z Angew Math Phys, 2002, 53(2): 265--280
[7] Rivera J E M, Salverra A P. Asymptotic behavior of energy in partially viscoelastic material. Quart Appl Math, 2001, 1(3): 557--578
[8] Mauro de Lima Santos. Decay rates for solutions of a system of wave equations with memory. Electronic Journal of Differential Equations, 2002, 38(1): 1--17
[9] 章春国. 具有局部记忆阻尼的非均质Timoshenko梁的稳定性. 数学物理学报, 2012, 32(1): 186--200
[10] Jong Yeoul Park, Sun Hye Park. General decay for a quasilinear system of viscoelastic equations with nonlinear damping. Acta Mathematica Scientia, 2012, 32B(4): 1321--1332
[11] 章春国, 谷尚武, 姜敬华. 具有Boltzmann阻尼Petrovsky系统的稳定性. 系统科学与数学, 2013, 33(7): 807--817
[12] Pazy A. Semigroups of Linear Operators and Applications to Partical Differential Euqations. New York: Springer-Verlag, 1983
[13] Huang F L. Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces. Ann of Diff Eqs, 1985, 1(1): 43--56
[14] Adams R A. Sobolev Spaces. New York: Acadamic Press, 1975
[15] Chen S P, Liu K S, Liu Z Y. Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping. SIAM J Appl Math, 1998, 2(59): 651--668
[16] Hartman P. Ordinary Differential Equations (2nd ed). Boston, Basel, Stuttgart: Birkh\"{a}user, 1982
[17] Hille E, Hillips R S. Functional Analysis and Semi-Groups. American Mathematical Society Colloquium Publications. 1957, 31: 141--150 |