数学物理学报 ›› 2014, Vol. 34 ›› Issue (4): 890-904.

• 论文 • 上一篇    下一篇

圆环上Dirichlet空间中的Toeplitz算子及其代数性质

陈建军1|王晓峰1,2   

  1. 1.广州大学数学与信息科学学院 广州 510006;
    2.广州大学数学与交叉科学广东普通高校重点实验室 广州 510006
  • 收稿日期:2012-11-14 修回日期:2014-01-10 出版日期:2014-08-25 发布日期:2014-08-25
  • 基金资助:

    广州市教育局高校科技计划项目(2012A018)资助.

Toeplitz Operator and Its Algebra on Dirichlet Space of the Annulus Domain

 CHEN Jian-Jun1, WANG Xiao-Feng1,2   

  1. 1.School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006;
    2.Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes, Guangzhou University, Guangzhou 510006
  • Received:2012-11-14 Revised:2014-01-10 Online:2014-08-25 Published:2014-08-25
  • Supported by:

    广州市教育局高校科技计划项目(2012A018)资助.

摘要:

主要讨论了: (1) 圆环上Dirichlet空间Dp (1<p<+∞), 以φL∞,1为符号的Toeplitz算子Tφ的紧性等价条件---Tφ的Berezin变换在圆环的两边界上为0; (2) 圆环上Dirichlet空间D2, 以uC1(M)为符号的Toeplitz算子Tu的性质, 并得到典型分解式: S=TS+R,其中R为换位子, S=∑mi=1nj=1Tuij.

关键词: Toeplitz算子, Berezin变换, Dirichlet空间, 紧算子

Abstract:

In this paper, we have given two goals. Firstly we study a single Toeplitz operator Tφ with symbol φL∞,1, which is on the general Dirichlet space Dp (1<p<+∞) of the annulus domain, and further conclude that Tφ is compact if and only if its Berezin transform vanishes at the boundary of the annulus. Secondly we study the Toeplitz operator Tu with symbol $u\in uC1(M), which is on classical Dirichlet space D2, and further give a canonical decomposition S=TS+R for some S=∑mi=1nj=1Tuij in Toeplitz algebra T and some R in the commutator ideal CT.

Key words: Toeplitz operator, Berezin transform, Dirichlet space, Compact operator

中图分类号: 

  • 47B35