[1] Szulkin A. Ljusternik Schnirelman theory on C1-manifolds. Anal non Lin\'{e}aire, 1988, 5(2): 119--139
[2] Zeidler E. Ljusternik-Schnirelman theory on general level sets. Math Nachr, 1986, 129(1): 235--259
[3] Zeidler E. The Ljusternik Schnirelman theory for indefinite and not necessarily odd nonlinear operators and its applications. Nonlinear Anal TMA, 1980, 4(3): 451--489
[4] Amann H. Ljusternik-Schnirelman theory and nonlinear eigenvalue problems. Math Ann, 1972, 199: 55--72
[5] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical sobolev exponent. Comm Pure Appl Math, 1983, 36(4): 437--477
[6] Brezis H. Nonlinear Equation Involving the Critical Sobolev Exponent-survey and Perspectives//Crandall M C, et al, ed. Directions in Partial Differential Equations. New York: Academic Press Inc, 1987: 17--36
[7] Shao Z Q, Hong J X. The eigenvalue problem for the Laplacian equations. Acta Math Scientia, 2007, 27B(2): 329--337
[8] Garcia Azorero J P, Peral Alonso I. Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues. Comm Partial Differential Equations, 1987, 12(12): 1389--1430
[9] Garcia Azorero J P, Peral Alonso I. Comportement asymptotique des valeurs propres du p-Lapacien. C R Acad Sci Paris S\'{e}r 1 Math, 1988, 307(2): 75--78
[10] Guedda M, V\'{e}ron L. Quasilinear elliptic equations involving critical sobolev exponents. Nonlinear Anal, 1989, 13(8): 879--902
[11] Li G B. The Existence of Nontrivial Solution of Quasilinear Elliptic PDE of Variational Type (in chinese). Wuhan: Wuhan Univ, 1987
[12] Motreanu D, Motreanu V V, Papageorgiou N S. A multiplicity theorem for problems with the p-Laplacian.
Nonlinear Anal, 2008, 68(4): 1016--1027
[13] Torre F, Ruf B. Multiplicity of solutions for a superlinear p-Laplacian equation. Nonlinear Anal, 2010, 73(7): 2132--2147
[14] Zhu X P. Nontrivial solution of quasilinear elliptic equations involving critical Sobolev exponent. Sciences, Sinica Ser A, 1988, 31(1): 1166--1181
[15] Lions P L. The concentration-compactness principle in the calculus of virations: the limit case, Part 1. Rev Mat Iberoamericana, 1985, 1: 145--201
[16] Lions P L. The concentration-compactness principle in the calculus of virations: the limit case, Part 2. Rev Mat Iberoamericana, 1985, 2: 45--121
[17] Benci V, Micheletti A M, Visetti D. An eigenvalue problem for a quasilinear elliptic field equation. J Dif Equ, 2002, 184(2): 299--320
[18] He C J, Li G B. The existence of a nontrivial solution to the p\&q-Laplacian problem with nonlinearity asymptotic to up-1 at infinity in Rn. Nonlinear Anal, 2008, 68(5): 1100--1119
[19] Li G B, Zhang G. Multiple solutions for the p&q-Laplacian problem with critical exponent. Acta Math Scientia, 2009, 29B(4): 903--918
[20] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer Science Business Media, LLC, 2011
[21] Halmos P R. Measure Theory. New York: Springer-Verlag, 1974
[22] Evans L C. Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences, Number 74. Providence, RI: Amer Math Soc, 1990
[23] Berestycki H, Lions P L. Nonlinear scalar field equations, I, II. Arch Rational Mech Anal, 1983, 82: 313--375
[24] Krasnosel'skii M A, Zabreiko P P. Geometrical Methods of Nonlinear Analysis. Berlin: Springer-Verlag, 1984 |