[1] Ansari Q H, Konnov I V, Yao J C. On generalized vector equilibriums. Nonlinear Analysis (TMA), 2001, 47: 543--554
[2] Bianchi M, Hadjisavvas N, Schaibles S. Vector equilibrium problems with generalized monotone bifunctions. J Optim Theory Appl, 1997, 92: 527--542
[3] Chen G Y, Huang X X, Yang X Q. Vector Optimization: Set-Valued and Variational Analysis. Berlin, Heidelberg: Springer-Verlag, 2005
[4] Fu J Y. Generalized vector quasi-equilibrium problem. Math Meth Oper Res, 2000, 52: 57--64
[5] Giannessi F. (ed.) Vector Variational Inequilities and Vector Equilibria: Mathematical Theories. Dordrechet: Kluwer, 2000
[6] Long X J, Huang N J, Teo K L. Existence and stability of solutions for generalized strong vector quasi-equilibrium problem. Math Comput Modelling, 2008, 47: 445--451
[7] Long X J, Peng J W. Connectedness and compactness of weak efficient solutions for vector equilibrium problems.
Bull Korean Math Soc, 2011, 48: 1225--1233
[8] Gong X H. Optimality conditions for vector equilibrium problems. J Math Anal Appl, 2008, 342: 1455--1466
[9] Long X J, Huang Y Q, Peng Z Y. Optimality conditions for the Henig efficient solution of vector equilibrium problems with constraints. Optim Lett, 2011, 5: 717--728
[10] Gong X H. Scalarization and optimality conditions for vector equilibrium problems. Nonlinear Anal, 2010, 73: 3598--3612
[11] Mordukhovich B S. Variational Analysis and Generalizd Differentiation. Vol. I: Basic Theory, vol 330. Berlin: Springer, 2006
[12] Gerth(Tammer) C, Weidner P. Nonconvex separation theorems and some applications in vector optimization. J Optim Theory Appl, 1990, 67: 297--320
[13] Loridan P. Necessary conditions for ε-optimality. Math Program Study, 1982, 19: 140--152
[14] Rockafellar R T, Wets R J B. Variational Analysis.Berlin: Springer, 1998
[15] Gong X H, Dong H B, Wang S Y. Optimality conditions for proper efficient solutions of vector set-valued optimization.
J Math Anal Appl, 2003, 284: 332--350
[16] Hiriart-Urruty J B. Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math Oper Res, 1979, 4: 79--97
[17] Zaffaroni A. Degrees of efficiency and degrees of minimality. SIAM J Optim, 2003, 42: 1071--1086
[18] Liu C P, Lee H W. Lagrange multiplier rules for approximate solutions in vector optimization. J Ind Manag Optim, 2012, 8: 749--764
[19] Durea J, Dutta J, Tammer C. Lagrange multipliers for ε-pareto solutions in vector optimization with nonsolid cones in Banach spaces. J Optim Theory Appl, 2010, 145: 196--211
[20] Gupta D, Mehra A. Two types of approximate saddle points. Numer Funct Anal Optim, 2008, 29: 532--550 |