数学物理学报 ›› 2014, Vol. 34 ›› Issue (3): 593-602.

• 论文 • 上一篇    下一篇

Asplund空间中非凸向量均衡问题近似解的最优性条件

龙宪军   

  1. 重庆工商大学数学与统计学院 重庆 400067
  • 收稿日期:2012-09-18 修回日期:2013-04-16 出版日期:2014-06-25 发布日期:2014-06-25
  • 基金资助:

    国家自然科学基金(11001287, 71271226)、重庆市自然科学基金(CSTC 2010BB9254, CSTC 2012jjA00039)和重庆市教委科技研究项目(KJ100711)资助

Optimality Conditions for Approximate Solutions on Nonconvex Vector Equilibrium Problems in Asplund Spaces

 LONG Xian-Jun   

  1. College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 40006
  • Received:2012-09-18 Revised:2013-04-16 Online:2014-06-25 Published:2014-06-25
  • Supported by:

    国家自然科学基金(11001287, 71271226)、重庆市自然科学基金(CSTC 2010BB9254, CSTC 2012jjA00039)和重庆市教委科技研究项目(KJ100711)资助

摘要:

在Asplund空间中, 研究了非凸向量均衡问题近似解的最优性条件. 借助Mordukhovich次可微概念, 在没有任何凸性条件下获得了向量均衡问题εe -拟弱有效解, εe -拟Henig 有效解, εe -拟全局有效解以及εe -拟有效解的必要最优性条件. 作为它的应用, 还给出了非凸向量优化问题近似解的最优性条件.

关键词: 非凸向量均衡问题, 近似解, 最优性条件, Mordukhovich次可微

Abstract:

The purpose of this paper is to study approximate solutions for the vector equilibrium problem in Asplund spaces without any convexity assumption. We obtain optimality conditions for εe-quasi weakly efficient solutions, εe-quasi Henig efficient solutions, εe-quasi globally efficient solutions and εe-quasi efficient solutions to vector equilibrium problems 
by the Mordukhovich subdifferential. As applications of our results, we derive some optimality conditions for nonconvex vector optimization problems.

Key words: Nonvector vector equilibrium problem, Approximate solution, Optimality condition, Mordukhovich subdifferential

中图分类号: 

  • 90C26