[1] Zheng X Y. {Scalarization of Henig proper efficient points in a normed space.} J Optim Theory Appl, 2000, 105: 233--247
[2] Zheng X Y. {Proper efficiency in locally convex topological vector spaces.} J Optim Theory Appl, 1997, 94: 469--486
[3] Qiu J H, Hao Y. {Scalarization of Henig properly efficient points in locally convex spaces.} J Optim Theory Appl, 2010, 147: 71--92
[4] Gerstewitz C. {Nichtkonvexe dualit\"{a}t in der vektoroptimierung.} Wiss Z - Tech Hochsch Ilmenau, 1983, 25: 357--364
[5] Gerstewitz C, Iwanow E. {Dualit\"{a}t f\"{u}r nichlkonvexe vektoroptimierungsprobleme.} Wiss Z - Tech Hochsch Ilmenau, 1985, 31: 61--81
[6] Qiu J H. {Superefficiency in locally convex spaces.} J Optim Theory Appl, 2007, 135: 19--35
[7] K\"{o}the G. {Topological Vector SpacesI.} Berlin: Springer-Verlag, 1969
[8] Holmes R B. {Geometric Functional Analysis and its Applications.} New York: Springer-Verlag, 1975
[9] Rudin W. {Functional Analysis.} New York: McGraw-Hill, 1991
[10] Chen G Y, Huang X X, Yang X Q. {Vector Optimization -- Set-Valued and Variational Analysis.} Berlin: Springer-Verlag, 2005
[11] Gerth C, Weidner P. {Nonconvex separation theorems and some applications in vector optimization.} J Optim Theory Appl, 1990, 67: 297--320
[12] u{S}mulian V. {On some geometrical properties of the unit sphere in the space of the type (B).} Mat Sbornik, 1939, 6: 77--94
[13] Borwein J M, Zhuang D. {Super efficiency in vector optimization.} Trans Amer Math Soc, 1993, 338: 105--122
[14] Liu J, Song W. {On proper efficiencies in locally convex spaces - a survey.} Acta Math Vietnam, 2001, 26: 301--312
[15] Fu W T, Cheng Y H. {On the super efficiency in locally convex spaces.} Nonlinear Anal, 2001, 44: 821--828
[16] Makarov E K, Rachkovski N N. {Density theorems for generalized Henig proper efficiency.} J Optim Theory Appl, 1996, 91: 419--437
[17] Zheng X Y. The domination property for efficiency in locally convex spaces. J Math Anal Appl, 1997, 213: 455--467 |