数学物理学报 ›› 2014, Vol. 34 ›› Issue (3): 581-592.

• 论文 • 上一篇    下一篇

单调Minkowski泛函与Henig真有效性的标量化

张申媛1|丘京辉2*   

  1. 1.上海电力学院数理学院 上海 |200090;  
    2.苏州大学数学科学学院 江苏 苏州 215006
  • 收稿日期:2012-08-09 修回日期:2013-03-11 出版日期:2014-06-25 发布日期:2014-06-25
  • 通讯作者: 丘京辉,jhqiu@suda.edu.cn E-mail:jhqiu@suda.edu.cn
  • 基金资助:

    国家自然科学基金(10871141)资助

Monotone Minkowski Functionals and Scalarizations of Henig Proper Efficiency

 ZHANG Shen-Yuan1, QIU Jing-Hui2*   

  1. 1.School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090;
    2.School of Mathematical Sciences, Soochow University, Jiangsu Suzhou 215006
  • Received:2012-08-09 Revised:2013-03-11 Online:2014-06-25 Published:2014-06-25
  • Contact: QIU Jing-Hui,jhqiu@suda.edu.cn E-mail:jhqiu@suda.edu.cn
  • Supported by:

    国家自然科学基金(10871141)资助

摘要:

没有凸锥的闭性和点性假设, 该文考虑由一般凸锥生成的单调Minkowski泛函并研究其性质. 由此, 在偏序局部凸空间的框架下, 通过利用单调连续Minkowski泛函和单调连续半范, 该文分别获得了一般集合及锥有界集合的弱有效点的标量化. 利用此弱有效性的标量化, 该文分别推导出一般集合及锥有界集合的Henig真有效点的标量化. 进而, 当序锥具备有界基时, 该文获得局部凸空间中超有效性的一些标量化结果. 最后, 该文给出Henig真有效性和超有效性的稠密性结果. 这些结果推广并改进了有关的已知结果.

关键词: 局部凸空间, Minkowski泛函, 弱有效性, Henig真有效性, 标量化, 稠密性

Abstract:

Without the closedness and the pointedness of convex cones, we consider monotone Minkowski functionals generated
by general convex cones and investigate  properties of those Minkowski functionals. From this, in the framework of partially ordered locally convex spaces we obtain scalarizations of weakly efficient points of a general set and of a cone-bounded set by using a monotone continuous Minkowski functional and a monotone continuous semi-norm,
respectively.  Using the scalarizations of weak efficiency, we deduce scalarizations of Henig properly efficient points of a
general set and of a cone-bounded set, respectively. Moreover, when the ordering cone has a bounded base, we obtain some scalarization results on superefficiency in locally convex spaces. Finally we give some density results for Henig proper efficiency and superefficiency. These results generalize and improve the related known results.

Key words: Locally convex space, Minkowski functional, Weak efficiency, Henig proper efficiency, Scalarization, Density

中图分类号: 

  • 90C29