[1] Ulam S M. A Collection of Mathematical Problems. New York: Interscience, 1960
[2] Hyers D H. On the stability of the linear functional equation. Proc Nat Acad Sci USA, 1941, 27: 222--224
[3] Rassias T M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72: 297--300
[4] Rassias J M, Semrl P. On the Hyers-Ulam stability of approximately additive mappings. J Math Anal Appl, 1993, 173: 325--338
[5] Hyers D H, Isac G, Rassisa J M. On the asymptoticity aspect of Hyers-Ulam stability of mappings. Proc Amer Math Soc, 1998, 126(2): 425--430
[6] Park C G. On the stability of the linear mappings in Banach modules. J Math Anal Appl, 2002, 275: 711--720
[7] Rassias J M. Solution of the Ulam stability problem for cubic mappings. Glasnik Matemati\v{c}ki, 2001, 36(1): 63--72
[8] Park K H, Jung Y S. Stability of a cubic functional equation on groups. Bull Korean Math Soc, 2004, 41(2): 347--357
[9] Najati A. Hyers-Ulam-Rassias stability of a cubic functional equation. Bull Korean Math Soc, 2007, 44(4): 825--840
[10] Najati A, Park C. On the stability of a cubic functional equation. Acta Mathmetica Sinica, 2008, 24(12): 1953--1964
[11] Najati A, Moradlou F. Stability of an Euler-Lagrange type cubic functional equation. Turk J Math, 2009, 33: 65--73
[12] Ravil K, Rassias J M, Narasimman P. Stability of a cubic functional equation in fuzzy normed space. J Math Anal Appl, 2011, 1(3): 411--425
[13] Erami A, Hoseini H, Shin D T, Kenary H A. Hyers-Ulam-Rassias stability of a cubic functional equation in RN-spaces, A direct method. Applied Mathematical Sciences, 2012, 35(6): 1719--1725
[14] Jun K W, Kim H M, Chang I. On the Hyers-Ulam-Rassias stability of an Euler-Lagrange type cubic functional equation. J Compur Anal Appl, 2005, 7(1): 21--33
[15] Badora R. On approximate ring homomorphisms. J Math Anal Appl, 2002, 276: 589--597
[16] Kenary H A. On the stability of a cubic functional equation in random normed spaces. J Math Extension, 2009, 4(1): 105--113 |