[1] Hammons A R, Kumar Jr P V, Calderbank A R, et al. The Z4-linearity of kerdock, preparata, goethals and related codes. IEEE Trans Inform Theory, 1994, 40(4): 301--319
[2] Calderbank A R, Sloane N J A. Modular and p-ary cyclic codes. Des Codes Crypotogr, 1995, 6(1): 21--35
[3] Kanwar P, L\'{o}pez-Permouth S R. Cyclic codes over the integer modulo pm. Finite Fields Appl, 1997, 3(4): 334--352
[4] Dinh H Q, L\'{o}pez-Permouth S R. Cyclic and negacyclic codes over finite chain rings. {IEEE Trans Inform Theory},
2004, 50(8): 1728--1744
[5] Norton G H, S\v{a}l\v{a}gean A. On the structure of linear and cyclic codes over finite chain rings. AAECC, 2000, 10(6): 489--506
[6] Yildiz B, Karadenniz S. Linear codes over F2+uF2+vF2+uvF2. Des Codes Crypotogr, 2010, 54(1): 61--81
[7] Yildiz B, Karadenniz S. Cyclic codes over F2+uF2+vF2+uvF2. Des Codes Crypotogr, 2011, 58(3): 221--234
[8] Wolfmann J. Negacyclic and cyclic codes over Z4. IEEE Trans Inform Theory, 1999, 45(7): 2527--2532
[9] Ling S, Blackford T. Zpk+1-linear codes. IEEE Trans Inform Theory, 2002, 48(9): 2592--2605
[10] Qian J F, Zhang L N, Zhu S X. (1+u)-constacyclic and cyclic codes over F2+uF2. Appl Math Lett, 2006, 19(8): 820--823
[11] Abualrub T, Siap I. Constacyclic codes over F2+uF2. J Franklin Inst, 2009, 346(5): 520--529
[12] S\v{a}l\v{a}gean A. Repeated-root cyclic and negacyclic codes over finite chain rings. Discrete Appl Math, 2006, 154(2): 413--419
[13] Kai X S, Zhu S X, Li P. (1+λu)-Constacyclic codes over Fp[u]/(um). J Franklin Inst, 2010, 347(5): 751--762
[14] Yildiz B, Karadenniz S. (1+v)-Constacyclic codes over F2+uF2+vF2+uvF2. J Franklin Inst, 2011, 348(9): 2625--2632 |