[1] Alzer H. Ungleichungen f"ur (e/a)a(b/e)b. Elem Math, 1985, 40: 120--123
[2] Alzer H. Ungleichungen f"ur Mittelwerte. Arch Math, 1986, 47(5): 422--426
[3] Alzer H, Qiu S L. Inequalities for means in two variables. Arch Math, 2003, 80(2): 201--215
[4] Bullen P S, Mitrinovi\'{c} D S, Vasi\'{c} P M. Means and Their Inequalities. Dordrecht: D. Reidel Pubishing Co, 1988
[5] Burk F. The geometric, logarithmic and arithmetic mean inequality. Amer Math Monthly, 1987, 94(6): 527--528
[6] Chen C P. The monotonicity of the ratio between generalized logarithmic means. J Math Anal Appl, 2008, 345(1): 86--89
[7] Chen C P, Qi F. Monotonicity properties for generalized logarithmic means. Aust J Math Anal Appl, 2004, 1(2), Art 2
[8] Chu Y M, Long B Y. Best possible inequalities between generalized logarithmic mean and classical means. Abstr Appl Anal, 2010, Art ID 303286
[9] Chu Y M, Long B Y. Sharp inequalities between means. Math Inequal Appl, 2011, 14(3): 647--655
[10] Chu Y M, Qiu Y F, Wang M K. Sharp power bounds for the combination of Seiffert and geometric means. Abstr Appl Anal, 2010, Art ID 108920
[11] Chu Y M, Wang M K. Optimal inequalities between harmonic, geometric, logarithmic, and arithmetic-geometric means. J Appl Math, 2011, Art ID 618929
[12] Chu Y M, Wang M K, Wang G D. The optimal generalized logarithmic mean bounds for Seiffert's means. Acta Math Sci, 2012, 32B(4): 1619--1626
[13] Chu Y M, Wang M K, Wang Z K. A sharp double inequality between harmonic and identric means. Abstr Appl Anal, 2011, Art ID
657935
[14] Chu Y M, Wang M K, Wang Z K. An optimal double inequality between Seiffert and geometric means. J Appl Math, 2011, Art ID 261237
[15] Chu Y M, Wang S S, Zong C. Optimal lower power mean bound for the convex combination of harmonic and logarithmic means. Abstr Appl Anal, 2011, Art ID 520648
[16] Chu Y M, Xia W F. Inequalities for generalized logarithmic means. J Inequal Appl, 2009, Art ID 763257
[17] Chu Y M, Xia W F. Two optimal double inequalities between power mean and logarithmic mean. Comput Math Appl, 2010, 60(1): 83--89
[18] Chu Y M, Zong C, Wang G D. Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean. J Math Inequal, 2011, 5(3): 429--434
[19] Kahlig P, Matkowski J. Functional equations involving the logarithmic mean. Z Angew Math Mech, 1996, 76(7): 385--390
[20] Lin T P. The power mean and the logarithmic mesn. Amer Math Monthly, 1974, 81: 879--883
[21] Long B Y, Chu Y M. Optimal inequalities for generalized logarithmic, arithmetic, and geometric means. J Inequal Appl, 2010, Art ID 806825
[22] Mond B, Pearce C E M, Pe\v{c}ari\'{c} J. The logarithmic mean is a mean. Math Commun, 1997, 2(1): 35--39
[23] Pearce C E M, Pe\u{c}ari\'{c} J. Some theorems of Jensen type for generalized logarithmic means. Rev Roumaine Math Pure Appl, 1995, 40(9--10): 789--795
[24] Pittenger A O. Inequalities between arithmetic and logarithmic means. Univ Beograd Publ Elektrotehn Fak Ser Mat Fiz, 1980, 678--715: 15--18
[25] Pittenger A O. The symmetric, logarithmic and power means. Univ Beograd Publ Elektrotehn Fak Ser Mat Fiz, 1980, 678--715: 19--23
[26] Pittenger A O. The logarithmic mean in n variables. Amer Math Monthly, 1985, 92(2): 99--104
[27] P\'{o}lya G, Szeg\"{o} G. Isoperimetric Inequalities in Mathematical Physics. Princeton: Princeton University Press, 1951
[28] Qi F, Chen S X, Chen C P. Monotonicity of ratio between the generalized logarithmic means. Math Inequal Appl, 2007, 10(3): 559--564
[29] Qi F, Li X A, Chen S X. Refinements, extensions and generalizations of the second Kershaw's double inequality. Math Inequal Appl, 2008, 11(3): 457--465
[30] Qiu Y F, Wang M K, Chu Y M, Wang G D. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean. J Math Inequal, 2011, 5(3): 301--306
[31] Shi H N. Schur-convex functions related to Hadamard-type inequalities. J Math Inequal, 2007, 1(1): 127--136
[32] Shi M Y, Chu Y M, Jiang Y P. Optimal inequalities among various means of two arguments. Abstr Appl Anal, 2009, Art ID 694394
[33] Stolarsky K B. The power and generalized logarithmic means. Amer Math Monthly, 1980, 87(7): 545--548
[34] Wang M K, Chu Y M, Qiu Y F. Some comparison inequalities for generalized Muirhead and identric means. J Inequal Appl, Art ID 295620
[35] Wang M K, Wang Z K, Chu Y M. An optimal doulbe inequality between geometric and identric means. Appl Math Lett, 2012, 25(3): 471--475
[36] Wang W L, Wen J J, Shi H N. Optimal inequalities involving power means. Acta Math Sinica (in Chinese), 2004, 47(6): 1053--1062
[37] Xia W F, Chu Y M, Wang G D. The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means. Abstr Appl Anal, 2010, Art ID 604804
[38] Zheng N G, Zhang X M, Chu Y M. Convexity and geometrical convexity of exponential and logarithmic means in N variables. Acta Math Sci (in Chinese), 2008, 28(6): 1173--1180 |