数学物理学报 ›› 2013, Vol. 33 ›› Issue (2): 309-316.

• 论文 • 上一篇    下一篇

任意维数两体量子态的Tangle

李宾1,2|沈广艳2   

  1. 1.首都师范大学 数学科学学院 北京 100037;
    2.东北师范大学 数学与统计学院 长春 130024
  • 收稿日期:2011-05-27 修回日期:2012-11-15 出版日期:2013-04-25 发布日期:2013-04-25

Tangle of Arbitrary Dimensional Bipartite Quantum States

 LI Bin1,2, SHEN Guang-Yan2   

  1. 1.Department of Mathematics, Capital Normal University, Beijing 100037;
    2.Department of Mathematics and Statistics, Northeast Normal University, Changchun 130024
  • Received:2011-05-27 Revised:2012-11-15 Online:2013-04-25 Published:2013-04-25

摘要:

利用任意维数两体量子态密度矩阵的concurrence判据、著名的Peres-Horodecki判据及重排判据之间的重要联系, 来获得纠缠量tangle (即I-concurrence)的两个解析下界.

关键词: 两体量子态, Tangle, 形成纠缠度, 重排判据, 部分转置判据

Abstract:

We derive two analytical lower bounds for one of entanglement measures called tangle (squared \emph{I}-concurrence) of a bipartite
quantum state in arbitrary dimension by two different ways. They are achieved by an important connection among the concurrence, the
well-known Peres-Horodecki, and realignment criteria. At last we give a comparison and find their internal relation of this two bounds.

Key words: Bipartite quantum state in arbitrary dimension, Tangle, the realignment criteria,   the Peres-Horodecki criteria

中图分类号: 

  • 81S10