[1] Cs\"{o}rg\H{o} M, Révész P. Strong Approximation in Probability and Statistics. New York: Academic Press, 1981
[2] Einmahl U. A generalization of Strassen's functional LIL. J Theor Probab, 2007, 20: 901--915
[3] Einmahl U, Mason D. Rates of clustering in Strassen's LIL for partial sum processes. Probab Th Rel Fields, 1993, 97: 479--487
[4] Einmahl U, Li D L. Some results on two-sided LIL behavior. Ann Probab, 2005, 33: 1601--1624
[5] Koml\'{o}s J, Major P, Tusnády G. An approximation of partial sums of independent r.v.'s and the sample d.f., II. Z Wahrsch Verw Gebiete, 1976, 34: 33--58
[6] Kuelbs J, Ledoux M. Extreme values and the laws of the iterated logarithm. Probab Th Rel Fields, 1987, 74: 319--340
[7] Ledoux M, Talagrand M. Some applications of isoperimetric methods to strong limit theorems for sums of independent random variables. Ann Probab, 1990, 18: 754--780
[8] Liu W D, Lin Z Y. Some LIL type results on the partial sums and trimmed sums with multidimensional indices. Elec Commun in
Probab, 2007, 12: 221--233
[9] Mori T. The strong law of large numbers when extreme terms are excluded from sums. Z Wahrsch Verew Gebiette, 1976, 36: 189--194
[10] Mori T. Stability for sums of i.i.d. random variables when extreme terms are excluded. {Z Wahrsch Verew Gebiette,} 1977, 40: 159--167
[11] Sakhanenko A I. On estimates of the rate of convergence in the invariance principle//Borovkov A A ed. Advances in Probab Theory: Limit Theorems and Related Problems. New York: Springer, 1984: 124--135
[12] Sakhanenko A I. Convergence Rate in the Invariance Principle for Nonidentically Distributed Variables with Exponential Moments//Borovkov A A ed. Advances in Probab Theory: Limit Theorems for Sums of Random Variables. New York: Springer, 1985: 2--73
[13] Sakhanenko A I. On the accuracy of normal approximation in the invariance principle. Siberian Adv Math, 1991, 1: 58--91
[14] Strassen V. An invariance principle for the law of the iterated logarithm. Z Wahrsch Verw Geb, 1964, 3: 211--226
[15] Zhang L X. Strong approximation theorems for sums of random variables when extreme terms are excluded. Acta Math Sinica (English Series), 2002, 18: 311--326
[16] Zhang L X, Huang W. A note on the invariance principle of the product of sums of random variables. Elect Comm. in Probab, 2007, 12: 59--64 |