[1] Date E. On quasi-periodic solutions of the field equation of the classical massive Thirring model. Prog Theor Phys, 1978, 59(1): 265--273
[2] Dubrovin B A. Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct Anal Appl, 1975, 9(1): 61--62
[3] Dubrovin B A, Natanzon S M. Real two-zone solutions of the sine-Gordon equations. Moscow State University, 1982, 16(1): 21--23
[4] Its A R, Matveev V B. Hill's operator with finitely many gaps. Leningrad State University, 1975, 9(1): 69--70
[5] Novikov S P, Manakov S V, etal. Theory of Solitons the Inverse Scattering Methods. New York: Consultants Bureau, 1984: 154--204
[6] Fomenko A F, Dubrovin B A, Novikov S P. Modern Geometry-Methods and Applications Part 2 (II). New York: Springer, 1985: 1--20
[7] Gesztesy F, Holden H. Soliton Equation and Their Algebro-Geometric Solutions. Columbia: Cambridge University Press, 2003: 19--241
[8] Cao C W, Geng X G. Research Report in Physics, Nonlinear Phys. Berlin: Springer, 1990: 68--78
[9] Cao C W. Nonlinearization of the Lax system for AKNS hierarchy. Science in China, 1990, 5: 528--536
[10] Cao C W, Geng X G, Wang H Y. Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable. J Math Phys, 2002, 43: 621--643
[11] Geng X G, Cao C W, Dai H H. Quasi-periodic solutions for some 2+1 dimensional integrable models generated by the Jaulent-Miodek HIerarchy. J Phys A, 2001, 34(5): 989--1004
[12] Dai H H, Fan E G. Variable separation and algebra-geometric solutions of the Gerdijkov-Ivanov equation. Chaos Solitons and Fractals,
2003, 22(1): 93--101
[13] Lu B, Zhang H Q. Constructive Methods in Solving Nonlinear Differential Equations and Symbolic Computation [D]. Dalin: Dalin University of Technology, 2010
[14] Feng Y, Zhang H Q. Hyperelliptic functions solutions of some nonlinear partial differential equations using the direct method.
Mathematics and Computation, 2010, 215: 3868--3873
[15] Feng Y, Zhang H Q. Riemann theta functions solutions with rational characteristics for 2+1 dimensions sinh-Gordon equation.
Modern Physics Letters B, 2010, 24(6): 575--584
[16] Tian S F, Zhang H Q. A kind of explicit Riemenn theta functions periodic waves solutions for discrete soliton equations. Commun Nonlinear Sci Numer Simulut, 2011, 16: 173--186
[17] Tu G Z. The trace identity: A powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1988, 30(2): 330--338
[18] Morser J. Integrable Hamiltonian System and Spectral Theory. Beijing Symposium on Differential Geometry and Differential Equations.
Beijing: Science, 1983: 157--229
[19] Tu G Z, Meng D Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. Acta Mathematicae Applicatae Sinica, 1989, 5(1): 89--95
[20] Griffiths P, Harris J. Principles of Algebraic Geometry. Beijing: A Wiley-interscience Publication, 1994: 213--262
[21] Chen J B. Algebro-geometric solutions to a hierarchy of 1+1 dimensional and two new 2+1 dimensional nonlinear evolution equation.
Chaos Solution and Fractals, 2004, 19(4): 905--918
[22] Springer G. Introduction to Riemann Surfaces. USA: Addison-wesley Publishing Company, 1957: 34--42 |