数学物理学报 ›› 2012, Vol. 32 ›› Issue (6): 1158-1165.

• 论文 • 上一篇    下一篇

抛物方程一种新混合有限元格式及误差分析

李磊, 孙萍, 罗振东   

  1. School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001
  • 收稿日期:2011-03-28 修回日期:2012-02-16 出版日期:2012-12-25 发布日期:2012-12-25
  • 基金资助:

    国家自然科学基金(11061009)、河北省自然科学基金(A2010001663)和贵州省科技计划项目(黔科合J字[2011]2367)资助

A New Mixed Finite Element Formulation and Error Estimates for Parabolic Equations

 LI Lei, SUN Ping, LUO Zhen-Dong   

  • Received:2011-03-28 Revised:2012-02-16 Online:2012-12-25 Published:2012-12-25
  • Supported by:

    国家自然科学基金(11061009)、河北省自然科学基金(A2010001663)和贵州省科技计划项目(黔科合J字[2011]2367)资助

摘要:

研究二维抛物方程, 提出一些新的、Brezzi--Babu\v{s}ka条件自然满足的混合变分格式、关于时间半离散混合格式和全离散化混合有限元格式, 并对这些格式做严格误差分析. 这种混合有限元格式不但自由度是最少的而且所得到的误差估计也是最优阶的, 是对现有格式的改进和发展.

关键词: 抛物方程, 新的混合变分格式, 新的混合有限元格式, 误差估计

Abstract:

In this paper, two-dimensional parabolic equations are studied with mixed method. A type of  new mixed variational formulations, time-semi-discrete mixed equations, and fully discrete mixed finite element formulations are derived, where Brezzi--Babu\v{s}ka's condition is automatically satisfied. And some rigorous error analyses are provided. The degrees of freedom are not only minimum for these mixed finite element formulations, but their error estimates also optimal order. Moreover, it is shown that the methods here are the improvements and renovations for existing all methods.

Key words: Parabolic equations, New mixed variational formulation, New mixed finite element formulation, Error estimate

中图分类号: 

  • 65N30