数学物理学报 ›› 2012, Vol. 32 ›› Issue (4): 785-796.

• 论文 • 上一篇    下一篇

带有扰动项的Hénon方程的多解性研究

朱红波1|王征平2|郭渊斌2   

  1. 1.广东工业大学 应用数学学院 广州 510006; 2.中国科学院武汉物理与数学研究所 武汉 430071
  • 收稿日期:2011-11-02 修回日期:2012-07-26 出版日期:2012-08-25 发布日期:2012-08-25
  • 基金资助:

    国家自然科学基金(11026138, 10801132)资助

Multiple Solutions for the Nonlinear Hénon Equation Under Perturbations

 ZHU Hong-Bo1, WANG Zheng-Ping2, GUO Yuan-Bin2   

  1. 1.Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006; 2.Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
  • Received:2011-11-02 Revised:2012-07-26 Online:2012-08-25 Published:2012-08-25
  • Supported by:

    国家自然科学基金(11026138, 10801132)资助

摘要:

研究了下面带有非齐次扰动项的H\'{e}non方程
u(x)=|x|α|u|p-2u+h(x),    xB,
u=0,                                 x∈∂B
其中B 是全空间RN, N>4 上的单位球. 应用Bahri-Berestycki (见文献[3])中的扰动方法, 证明了对任意的h(x)=h(y, z)=h(|y|, |z|)L2B, x=(y, z)∈
Rl×RN-l, 当α> N+2时, 存在常数pN, l>2 使得对任意的p∈(2, pN, l), 方程(P)存在无穷多互异解.

关键词: Hénon 方程, 扰动方法, 无穷多互异解

Abstract:

In this paper,  we are concerned with the following nonlinear elliptic problem
u(x)=|x|α|u|p-2u+h(x),    xB,
u=0,                                 x∈∂B
Here Ω( RN, N>4 is smooth and bounded. Applying the perturbation method introduced by Bahari-Berestycki[3], for any h(x)=h(y, z)=h(|y|, |z|)L2B, x=(y, z)∈
Rl×RN-l, when α> N+2, we show that there exists pN, l>2 such that for any p∈(2, pN, l), problem (P) has infinity many distinct solutions.

Key words: Hénon equation, Perturbation method, Infinity many distinct solutions

中图分类号: 

  • 60F15