数学物理学报 ›› 2012, Vol. 32 ›› Issue (4): 753-767.

• 论文 • 上一篇    下一篇

关于Lp -截面体和Lp -混合截面体

马统一   

  1. 河西学院数学与统计学院 甘肃张掖 734000
  • 收稿日期:2011-05-29 修回日期:2012-04-27 出版日期:2012-08-25 发布日期:2012-08-25
  • 基金资助:

    国家自然科学基金(11161019)和甘肃省教育厅研究生导师科研基金(1009B-09)资助

On Lp-Intersection Body and Lp-Mixed Intersection Body

 MA Tong-Yi   

  1. College of Mathematics and Statistics, Hexi University, Gansu Zhangye 734000
  • Received:2011-05-29 Revised:2012-04-27 Online:2012-08-25 Published:2012-08-25
  • Supported by:

    国家自然科学基金(11161019)和甘肃省教育厅研究生导师科研基金(1009B-09)资助

摘要:

对于p<1和p≠0, Haberl和Ludwig引进了星体的Lp -截面体IpK的概念. 该文研究截面体的极值性质, 获得了Lp -截面体的单调性, 建立了Lp-Busemann-Petty截面不等式.并且将Lp -截面体的概念进一步拓展, 提出了Lp -混合截面体的概念. 作为应用, 建立了Lp -混合截面体和它的极体的Aleksandrov -Fenchel型不等式.  这些结果是已有结果的对偶形式.

关键词: 面体, Lp -截面体, Lp -混合截面体

Abstract:

For p<1and p≠0, Haberl and Ludwig introduced an Lp-intersection body IpK of a star body K. In this paper we study extreme nature of the
Lp-intersection body, and Lp-type Busemann-Petty intersection inequality is established. Meanwhile, we further expand the concept of 
Lp-intersection body to Lp-mixed intersection body is put forward. As an application, we  establish Aleksandrov-Fenchel type inequalities for Lp-mixed intersection body and its polar body. These results are the dual form of some known results.

Key words: Intersection body, Lp-intersection body, Lp-mixed intersection body

中图分类号: 

  • 52A40