[1] Anane A. Simplicite et isolation de la premiere valeur propre du p-Laplacian avec poids. C R Hebd Seanc Acad Sci Paris Ser I Math, 1987, 305: 725--728
[2] Lindqvise P. On the Equation div(|\nablau|p-2\nabla u) +λ|u|p-2u=0. Proc Amer Math Soc, 1990, 109: 159--164
[3] Li F, Li Y. Multiple sign-changing solutions to semilinear elliptic resonant problems. Nonlinear Anal, 2010, 72(9/10): 3820--3827
[4] Tang C, Wu X. Existence and multiplicity of solutions of semilinear elliptic equations. J Math Anal Appl, 2001, 256: 1--12
[5] Tang C. Solvability of two-point boundary value problem. J Math Anal Appl, 1997, 216: 368--374
[6] Liu S, Tang C. Existence and multiplicity of solutions for a class of semilinear elliptic equations. J Math Anal Appl, 2001, 257: 321--331
[7] Wu X, Tang C. Some existence theorems for elliptic resonant problems. J Math Anal Appl, 2001, 264: 133--146
[8] Drabeka P, Girga P, Rocab F. Remarks on the range properties of certain semilinear problems of Lan- desman-Lazer % Landesman-Lazer type.J Math Anal Appl, 2001, 257(1): 131--140
[9] Leszek Gasinski. Strongly resonant quasilinear elliptic equations. Nonlinear Anal, 2008, 68(4): 969--980
[10] Bouchala J, Drabek P. Strong resonance for some quasilinear elliptic equations. J Math Anal Appl, 2000, 245(1): 7--19
[11] Krasnoselski M A. Topological Methods in the Theory of Nonlinear Integral Equations. New York: Macmillam, 1964
[12] Coffman C V. A minimum-maximum principle for a class of nonlinear integral equations. J Anal Math, 1969, 22: 391--419
[13] Drabek P. Solvability and Bifurcations of Nonlinear Equations. Pitman Research Notes in Math Ser 265. Harlow: Longman, 1992
[14] Drabek P, Kufner A , Nicolosi F. Quasilinear Elliptic Equations with Degenerations and Singularities. Berlin, New York: Walter de Gruyter, 1997
[15] Arcoya D, Orsina L. Landesman-Lazer conditions and quasilinear elliptic equations. Nonlinear Anal, 1997, 28: 623--1632
[16] Otani M, Teshima T. On the first eigenvalue of some quasilinear elliptic equations. Proc Japan Acad Ser A Math Sci, 1988, 64: 8--10
[17] Sakaguchi Shigeru. Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, Sér, 1987, 4: 403--421
[18] Otani M, Teshima T. On the first eigenvalue of some quasilinear elliptic equations. Proc Japan Acad Ser A Math Sci, 1988, 64: 8--10
[19] Lukes J, Maly J. Measure and Integral. Prague: Charles Univ Press, 1995
[20] Ruofeng Rao, Qinggao He. Non-zero solution for the quasi-linear elliptic equation. Chin Quart J of Math, 2009, 24(1): 117--124
[21] 王雄瑞. 半线性椭圆型方程解的存在性. 宜宾学院学报, 2009, 9(12): 5--8
[22] 黄家琳. 一类非线性常微分方程解的存在性. 宜宾学院学报, 2010, 10(12): 13--15
[23] 饶若峰. 具临界指数椭圆方程-\nabla u=λk u+|u|2*-2u+f(x, u)非平凡多解存在性. 数学年刊A辑(中文版), 2005, 26A(6): 749--754 |