[1] Abdulhadi Z, Abu-Muhanna Y. Landau's theorem for biharmonic mappings. J Math Anal Appl, 2008, 338: 705--709
[2] Abdulhadi Z, Abu-Muhanna Y, Khoury S. On univalent solutions of the biharmonic equations. J Inequal Appl, 2005, 5: 469--478
[3] Abdulhadi Z, Abu-Muhanna Y, Khoury S. On some properties of solutions of the biharmonic equation. Appl Math Comput, 2006, 177: 346--351
[4] Abu-Muhanna Y, Hallenbeck D J. Subordination families and extreme points. Trans Amer Math Soc, 1988, 308: 83--89
[5] Abu-Muhanna Y, Schober G. Harmonic mappings onto convex domains. Canadian Math J, 1987, 39(6): 1489--1530
[6] Avci Y, Zlotkiewicz E. On harmonic univalent mappings. Ann Univ Mariae Curie Sklodowska (Sect A), 1990, 44: 1--7
[7] Chen Sh, Ponnusamy S, Wang X. Bloch constant and Landau's theorem for planar p-harmonic mappings. J Math Anal Appl, 2011, 373: 102--110
[8] Clunie J G, Sheil-Small T. Harmonic univalent functions. Ann Acad Sci Fenn (Ser A), 1984, 9: 3--25
[9] Dixit K K, Porwal S. On a subclass of harmonic univalent functions. J Ineq Pure Appl Math, 2009, 10(1): 1--18
[10] Duren P. Harmonic Mappings in the Plane. New York: Cambridge Univ Press, 2004
[11] Duren P. Univalent Functions. New York: Springer-Verlag, 1982
[12] Jahangiri J M. Harmonic meromorphic starlike functions. Bull Korean Math Soc, 2000, 37: 291--301
[13] Janteng A. Properties of harmonic functions which are starlike of complex order with respect to conjugate points. Int J Contemp Math Sciences, 2009, 4: 1353--1359
[14] Khuri S A. Biorthogonal series solution of Stokes flow problems in sectorial regions. SIAM J Appl Math, 1996, 56: 19--39
[15] Kim Y C, Jahangiri J M, Choi J H. Certain convex harmonic functions. Int J Math Math Sci, 2002, 29: 459--465
[16] Langlois W E. Slow Viscous Flow. New York: Macmillan Company, 1964
[17] MacGregor T H. Applications of extreme point theory to univalent functions. Michigan Math J, 1972, 19: 361--376
[18] Milcetich J G. On the extreme points of some sets of analytic functions. Proc Amer Math Soc, 1974, 45: 223--228
[19] Ö}zt\"{u}rk M, Yal\c{c}in S. On univalent harmonic functions. J Inequal Pure Appl Math, 2002, 3(4): 1--8
[20] Pommerenke C. Univalent Functions. G\"{o}ttingen: Vandenhoeck and Ruprecht, 1975
[21] Ruscheweyh S. Neighborhoods of univalent functions. Proc Amer Math Soc, 1981, 18: 521--528
[22] Silverman H. Integral means for univalent functions with negative coefficients. Houston J Math, 1997, 23: 169--174
[23] Stephen B A, Nirmaladevi P, Sudharsan T V, Subramanian K G. A class of harmonic meromorphic functions with negative coefficients. Chamchuri J Math, 2009, 1: 87--94
[24] Yal\c{c}in S, Ö}zt\"{u}rk M. On a subclass of certain convex harmonic functions. J Korean Math Soc, 2006, 43: 803--813
[25] Yal\c{c}in S, Özt\"{u}rk M, Yamankaraden\.{i}z M. On the subclass of Salagean-type harmonic univalent functions. J Inequal Pure Appl Math (electronic), 2007, 8: 1--9 |