[1] Al-Omari J, Gourley S. Monotone travelling fronts in an age-structured reaction-diffusion model of a single species. J Math Biol, 2002, 45: 294--312
[2] Boshaba K, Ruan S. Instability in diffusive ecologial models with nonlocal delay effects. J Math Anal Appl, 2001, 258: 269--286
[3] Britton N F. Spatial structures ans periodic traveling waves in an integrodifferential reaction-diffusion -population model. SIAM J Appl Math, 1990, 50: 1663--1688
[4] Du Y H, Hsu S B. A diffusive predator-prey model in heterogeneous environment. J Differential Equations, 2004, 203: 331--364
[5] Du Y H, Wang M X. Asymptotic behavior of positive steady-states to a predator-prey model. Proc Roy Soc Edinburgh (Sect A), 2006, 136: 759--778
[6] Faria T, Huang W, Wu J. Traveling waves for delayed reaction-diffusion equations with global response. Proc R Soc Lond Ser A Math Phys Eng Sci, 2006, 462: 229--261
[7] Gourley S A. Instability in a predator-prey system with delay and spatial averaging. IMA J Appl Math, 1996, 156: 121--132
[8] Gourley S A, Britton N F. Instability of traveling wave solutions of a population model with nonlocal effects. IMA J Appl Math, 1993, 51: 299--310
[9] Gourley S A, Britton N F. A predator-prey reaction-diffusion system with nonlocal sffects. J Math Biol, 1996, 34: 297--333
[10] Gourley S A, Ruan S. Convergence and traveling fronts in functional differential equations with nonlocal terms: a competition model.
SIAM J Math Anal, 2003, 35: 806--822
[11] Gourley S A, Ruan S. Spatio-temporal delays in a nutrient-plankton model on a finite domain: linear stability and bifurcation. Appl Math Comput, 2003, 145: 391--412
[12] Gourley S A. Travelling front solutions of a nonlocal Fisher equation. J Math Biol, 2000, 41: 272--284
[13] Gourley S A, So J W H. Dynamics of a food-limitted population model incorporation nonlocal delays on a finite domain. J Math Biol, 2002, 44: 49--78
[14] Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics Vol 840. Berlin, New York: Springer-Verlag, 1993
[15] Hirsch M W. The dynamical systems approach to differential equations. Bull American Math Soc, 1984, 11: 1--64
[16] Hsu S B, Huang T W. Global stability for a class of predator-prey systems. SIAM J Appl Math, 1995, 55: 763--783
[17] Liu Z, Tan R, Chen Y, Chen L. On the stable periodic solutions of a delayed two-species model of facultative mutualism. Appl Math Comput, 2008, 196: 105--117
[18] Lu S. On the existence of positive periodic solutions to a Lotka-Volterra cooperative population model with multiple delays.Nonlinear Anal, 2008, 68: 1746--1753
[19] Ma S. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J Differential Equations, 2001, 171: 294--314
[20] Ma S. Traveling waves for non-local delayed diffusion equations via auxiliary equation. J Differential Equations, 2007, 237: 259--277
[21] Pao C V. Nonlinear Parabolic and Elliptic Equations. New York: Plenum, 1992
[22] Pao C V. Convergence of solutions of reaction-diffusion systems with time delays. Nonlinear Anal, 2002, 48: 349--362
[23] Saez E, Gonzalez-Olivares E. Dynamics of a predator-prey model. SIAM J Appl Math, 1999, 59: 1867--1878
[24] Saito Y. The necessary and sufficient condition for global stability of a Lotka-Volterra cooperative or competition system with delays.
J Math Anal Appl, 2002, 268: 109--124
[25] Schaaf K W. Asymptotic behavior and travelling wave solutions for parabolic functional differential equations.Trans Amer Math Soc, 1987, 302: 587--615
[26] E. Trofimchuk E, Alvaradob P, Trofimchuk S. On the geometry of wave solutions of a delayed reaction-diffusion equation. J Differential Equations, 2009, 246: 1422--1444
[27] Wang H Y. On the existence of traveling waves for delayed reaction-diffusion equations. J Differential Equations, 2009, 247: 887--905
[28] Wang M X. Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional reponses and diffusion.
Physica D, 2004, 196: 172--192
[29] Lv G Y, Wang M X. Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model. Nonlinear Anal RWA, 2009, in press
[30] Wang Z C, Li W T, Ruan S G. Travelling wave fronts in reaction-diffusion systems with spatio-temporal delays. J Differential Equations 2006, 222: 185--232
[31] Wang Z C, Li W T, Ruan S G. Traveling Fronts in Monostable Equations with Nonlocal Delayed Effects. J Dyn Diff Equat, 2008, 20: 573--607
[32] Wei F, Wang K. Asymptotically periodic solution of N-species cooperation system with time delay. Nonlinear Anal RWA, 2006, 7: 591--596
[33] Wu J H, Zou X F. Traveling wave fronts of reaction-diffusion systems with delay. J Dynam Differential Equations, 2001, 13: 651--687
[34] Wu H, Xia Y, Lin M. Existence of positive periodic solution of mutualism system with several delays. Chaos Solitons Fractals, 2008, 36: 487--493
[35] Wu J H. Theory and Applications of Partial Functional Differential Equations.New York: Springer-Verlag, 1996
[36] Yamada Y. On a certain class of semilinear Volterra diffusion equation. J Math Anal Appl, 1982, 88: 433--451
[37] Yamada Y. Asymptotic sability for some semilinear Volterra diffusion equations. J Differential Equations, 1984, 52: 285--326 |