数学物理学报 ›› 1999, Vol. 19 ›› Issue (3): 312-317.

• 论文 • 上一篇    下一篇

高阶双参量Runge-Kutta方法

  

  1. 番禺师专数学系 |广东番禺 511400
  • 出版日期:1999-08-03 发布日期:1999-08-03

High-Order Runge-Kutta Methods With Two Parameters

  1. Department of mathematics,fanyu teacher's college,guangdong 511400
  • Online:1999-08-03 Published:1999-08-03

摘要:

 构造了仅由两个参量确定的方法类RKS(μ,δ),一切节点属于区间[0,1]且至少2s-1阶相
容的s级PK的方法,如Radau|A,Radau‖A,Gauss方法等,均是其特例.此类方法的代数稳定性
与A-稳定性均等价于参量的μ 的非负性,这一准则改进了Burrage的如下结论:一个满足简化条
件B(s)和C(s)的RK的方法代数稳定的必要条件是它至少2s-1阶相容.基于此类方法构造
了高阶指数拟合的RK公式,且公式是代数稳定的,因而适于求解非线性stiff问题.特别,当用k(k
>1)步方法求解stiff问题时,用拟合得当的RK公式确定k-1个附加初值是行之有效的.

关键词: RaugeKutta方法, 代数稳定性, 指数拟合公式.

Abstract:

a class of runge-kutta methods charaterized only by two parameters RKs(μ,δ)  is given  so taht all s-stage runge-kutta methods with distinct abscissas in the interval [0,1],if consisistent of order at less 2s-1 ,are recovered as special cases .for these methods both a-stability or algebraic stability are all equivalent to the condition μ≧,this criteria is an improvement of a famous result by burrage ([3],theorem 4.6.11).based on the methods of this class arbitrarily high order exponentially fitted methods are offered which are algebraically stable and therefore suitable for integration with a large stepsize for fast decaying components of stiff systems.

Key words: Twoparameters, RungeKuttaMathods, Highorder.

中图分类号: 

  •  65L