1 R E Jr O'Malley. Introduction to singular perturbations. New York:Academic Press, 1974
2 Chang K W, Haves F A. Nonlinear singular perturbation phenomena: Theory and
Applications. Berlin: Springer, 1984
3 Niijima K. Auniformly convergent difference scheme for a semilinear singular perturbation problem. Numer Math, 1984, 43:175-198
4 Niijima K. On a difference scheme of exponantial type for nonlinear singular perturbation problem. Numer Math, 1985, 46:521-539
5 Niijima K. An error analysis for a difference scheme of exponential type applied to a nonlinear singular perturbation problem without turning points. J Comp Appl Math, 1986, 15:93-101
6 王国英. 含双参数的半线性奇异摄动问题的一致收敛差分格式. 计算数学, 1991, 4:412-416
7 Wang Guoying. The application of integral equations to the numerical solution of nonlinear singular perturbation problems. J Comp Math, 1994, 12(1):36-45
8 Friedman A. Partial differential equations of parabolic type. Prentice-Hall Inc, 1964
9 Lorenz J. Combinations of initial and boundary value method for a class of singular perturbation problem, in Numerical Analysis of Singular perturbation problems,(eds.Hemker/Miller),1979, 296-315
10 Kallogg R B, Tsan A. Analysis of some difference approximations for a singular perturbation problem without turning points. Math Comp, 1978, 32:1025-1039
11 Berger A E, et al. Generalized OCI scheme for boundary layer problems. Math Comp, 1980,35: 695-731
10 Бонлаев И П. Приближенное решение нелинейной краевой задачи с мальем параметром при старшей производной. Ж вычисл матем и матем физ, 1984, 24: 1629-1656 |