[1] Beale J, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm Math Phys, 1984, 94: 61--66
[2] He C. Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electron J Differential Equations, 2002, 2002(29): 1--13
[3] Katz N, Pavlovic N. A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Sokes equation with hyper-dissipation. Geom Funct Anal,
2002, 12: 355--379
[4] Kozono H, Taniuchi Y. Bilinear estimates in BMO and the Navier-stokes equations. Math Z, 2000, 235: 173--194
[5] Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 242: 251--278
[6] Kukavica I, Ziane M. One component regularity for the Navier-Stokes equations. Nonlinearity, 2006, 19: 453--469
[7] Leray J. Etude de diverses equations integrates nonlineaires et quelque problemes que pose 1'hydrodynamique. J Math Pures Appl, 1933, 12: 1--82
[8] Leray J. Essai sur les mouvements plans d'un liquide visqueux que limitent des parois. J Math Pures Appl, 1934, 13: 331--418
[9] Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math, 1934, 63: 193--248
[10] 苗长兴.调和分析及其在偏微分方程中的应用. 北京: 科学出版社, 2004
[11] Neustupa J, Novotn\'{y} A, Penel P. An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity. Topics in Mathematical Fluid Mechanics Quad Mat, 2002, 10: 163--183
[12] Serrin J. On the interior regularity of weak solutions of the Navier-stokes equations. Arch Ration Mech Anal, 1962, 9: 187--195
[13] Serrin J. The Initial Value Problem for the Navier-Stokes Equations//R.E. Langer(ed.). Nonlinear Problems. Madison: University of Wisconsin Press, 1963: 69--98
[14] Tao T. Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equations. Anal PDE, 2009, 2(3): 361--366
[15] Triebel H. Theory of Function Spaces. Basel: Birkhäuser Verlag, 1983
[16] Beirào da Veiga H. Concerning the regularity problem for the solution of the Navier-stokes equations. C R Acad Sci Paris Sér I Math, 1995, 321: 405--408
[17] Beirào da Veiga H. A new regularity class for the Navier-Stokes equations in Rn. Chinese Ann Math (Ser B), 1995, 16: 407--412
[18] Wu J. Generalized MHD equations. J Differemtial Equations, 2003, 195: 284--312
[19] Wu J. Global regularity for a class of generalized magnetohydrodynamic equations. J Math Fluid Mech, doi 10.1007/s00021-009-0017-y
[20] Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 84: 1496--1514
[21] Zhou Y. A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl Anal, 2002, 9: 563--578
[22] Zhou Y, Pokorn\'{y} M. On the regularity of the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity, 2010, 23: 1097--1107
[23] Zhou Y, Pokorn\'{y} M. On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J Math Phys, 2009, 50(12): 123514
[24] Zhou Y. Regularity criteria for the generalized viscous MHD equations. Ann I H Poincar\'{e}-AN, 2007, 24: 491--505
[25] Zhou Y. A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field. Nonlinear Anal, 2010, 72: 3643--3648 |