[1] Yang C N, Lee T D. Statistical theory of equations of state and phase transitions I: theory of condensation. Phys Rev, 1952, 87: 404--419
[2] Fisher M E. Lectures in Theoretical Physics, Vol. VIIC//Brittin W B, eds. New York: Gordon and Breach, 1965
[3] Derrida B, DeSeze L, Itzykson C. Fractal structure of zeros in hierarchical models. J Stat Phys, 1983, 33: 559--569
[4] Derrida B, Itzykson C, Luck J K. Oscillatory critical amplitudes in hierarchical models. Commun Math Phys, 1984, 94: 115--132
[5] Erzan A. Hierarchical q-state Potts models with periodic and aperiodic renormalization group trajectories. Phys Lett A, 1983, 93: 237--240
[6] Hu B, Lin B. Yang-Lee zeros, Julia sets, and their singularity spectra. Phys Review, 1989, 39: 4789--4796
[7] Qiao J. Julia sets and complex singularities in diamond-like hierarchical Potts models. Science in China (Ser A), 2005, 48(3): 388--412
[8] Kaufman K, Griffiths R B. Infinite susceptibility at high temperature in the Migdal-Kadanoff scheme. J Phys A, 1982, 15: 239--242
[9] Gao J, Qiao J. Hausdorff dimension and continuity of Julia set concerning Yang-Lee theorem. Acta Mathematica Scientia, 2008, 28(3): 530--534
[10] Qiao J, Yin Y, Gao J. Feigenbaum Julia sets of singularities of free energy. Erdod Th Dynam Sys, 2010, 30: 1573--1591
[11] Beardon A F. Iteration of Rational Functions. Berlin: Springer-Verlag, 1991
[12] Mcmullen C T. Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps. Comm Math Helv, 2000, 75: 535--593
[13] Yin Y. Continuity of Julia set of polynomial (in chinese). Acta Math Sinica, 1995, 18: 99--102; Science in China (Ser A), 1999, 29(3): 215--218
[14] Wu S. Continuity of Julia set. Science in China (Ser A), 1999, 29(3): 215--218
[15] Douady A. Does a Julia set depend continuously on the ploynomial? Proc Symp Appl Math, 1994, 49: 91--135
[16] Qiao J, Li Y. On connectivity of Julia sets of Yang-Lee zeros. Commun Math Phys, 2001, 222: 319--326 |