数学物理学报 ›› 2011, Vol. 31 ›› Issue (5): 1176-1180.

• 论文 • 上一篇    下一篇

关于预定曲率方程的解曲面的凸性的一个注记

徐金菊   

  1. 中国科学技术大学数学系 合肥 230026; |曲阜师范大学数学系 山东曲阜 273165
  • 收稿日期:2010-01-15 修回日期:2011-03-06 出版日期:2011-10-25 发布日期:2011-10-25
  • 基金资助:

    国家自然科学基金(10671186)资助

A Remark on the Convexity of Hypersurface with Prescribed Curvature Equations

 XU Jin-Ju   

  1. Department of Mathematics, University of Science and Technology of China, Hefei 230026|School of Mathematics and Science, Qufu Normal University, Shandong Qufu 273165
  • Received:2010-01-15 Revised:2011-03-06 Online:2011-10-25 Published:2011-10-25
  • Supported by:

    国家自然科学基金(10671186)资助

摘要:

该文考虑如下预定曲率方程Sk(λ{hij})(X)=f(X),  XM\subset Rn+1, 应用Hamilton 张量极大值原理证明了带边界情形下, 如果M 的第二基本形式 hij 半正定, 则有解曲面M 凸. 从而, 不难得到常平均曲率方程的解曲面凸.

关键词: 凸性, 曲率方程, 极大值原理

Abstract:

In this article, the author investigates the solution surface of the prescribed curvature equation Skλ{hij})(X),=\, f(X),\, \forall XM\subsetRn+1. It is proved that the solution surface M of the prescribed curvature equation in Rn+1 is convex under the condition that the second fundamental form hij of M is semi-positive definite on the boundary ∂M. The author  makes use of Hamilton tensor maximum principle to prove this result. As a consequence, the convexity for the solution surface of constant mean curvature in Rn+1 is easily obtained.

Key words: Convexity, Curvature equation, Maximum principle

中图分类号: 

  • 35J60