[1] Sun Liying. A comparison theroem for the SOR iterative method. Journal of Computational and Applied Mathematics, 2005, 181: 336--341
[2] Kohno T, et al. Improving the modified iterative methods for Z-matrice. Linear Algebra Appl, 1997, 267: 113--123
[3] Li Jicheng, Huang Tingzhu. Preconditioned methods of Z-matrices. Acta Mathematica Scientia, 2005, 25A(1): 5--10
[4] Ludwig Elsner, Andreas Frommer, Reinhard Nabben, etc. Conditions for strict inequality in comparisons of spectral radii of splittings of different matrices. Linear Algebra Appl, 2003, 363: 65--80
[5] Abraham Berman, Robert J. Plemmons, Nonnegative Matrices in the Mathematical Science. New York: Academic Press, 1979
[6] Li Wen, Sun W W. Modified Gauss-Seidel methods and Jacobi type methods for Z-matrices. Linear Algebra Appl, 2000, 317: 223--240
[7] Li Wen. Comparison results for solving preconditioned linear systems. Journal of Computational and Applied Mathematics, 2005, 176: 319--329
[8] Wu Meijun, Wang Li, Song Yongzhong. Preconditioned AOR iterative method for linear systems. Applied Numerical Mathematics, 2007, 57: 672--685
[9] Gunawardena A D, Jain S K, Snyder L. Modified interative methods for consistent linear systme. Linear Algebra and its Application, 1991, 154--156: 123--143
[10] Evans D J, Martins M M, Trigo M E. The AOR iterative method for new preconditioned linear systems. Comput Appl Math, 2001, 132: 461--466
[11] Jiang Y L, Liu Y W, Mei K K, Chen R M M. A new iterative technique for large and dense linear systems from the MEI method in electromagnetics. Appl Math Comp, 2003, 139: 157--163 |