[1] Blum E, Oetti W. From optimization and variational inequalities to equilibrium problems. Math Student, 1994, 63: 123--145
[2] Combettes P L, Hirstoaga S A. Equilibrium programms in Hilbert spaces. J Nonlinear Convex Anal, 2005, 6: 117--136
[3] Moudafi A. Second-order differential proximal methods for equilibrium problems. J Inequal Pure Appl Math, 2003, 4: 1--8
[4] Takahashi W, Zembayashi K. Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal, 2009, 70: 45--57
[5] Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces.
J Math Anal Appl, 2007, 331: 506--515
[6] Qin X L, Shang S M, Su Y F. A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. Fixed Point Theory and Applications, 2008, 2008: 1--9
[7] Alber Ya I. Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications//Kartsatos A G ed. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Marcel Dekker, 1996: 15--50
[8] Alber Ya I, Reich S. An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamer Math J, 1994, 4: 39--54
[9] 曾六川. Banach空间中渐近非扩张映像的修正Reich-Takahashi型迭代法的强收敛性. 数学物理学报, 2006, 26A(1): 39--44
[10] 高兴慧, 周海云. 拟φ -渐近非扩展映像族的公共不动点的迭代算法. 系统科学与数学, 2010, 30(4): 486--492
[11] Reich S. A weak convergence theorem for the alternating method with Bregman distance//Kartsatos A G ed. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Marcel Dekker, 1996: 313--318
[12] Butnariu D, Reich S, Zaslavski A J. Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J Appl Anal, 2001, 7: 151--174
[13] 饶若峰. 带误差的合成隐迭代新算法. 数学物理学报, 2009, 29A(3): 823--831
[14] Zhou H Y, Gao G L, Tan B. Convergence theorems of a modified hybrid algorithm for a family of quasi-φ-asymptotically
nonexpansive mappings. J Appl Math Computing, 2010, 32(1): 453--464
[15]}Hudzik H, Kowalewski W, Lewicki G. Approximative compactness and full rotundity in Musielak-Orlicz spaces and Lorentz-Orlicz spaces. Zeitschrift fuer Analysis und ihre Anwendungen, 2006, 25: 163--192
[16] Cho Y J, Zhou H Y, Guo J T. Weak and strong convergence theorems for three-step iterations with errors for asymptotically
nonexpansive mappings. Comput Math Appl, 2004, 47: 707--717
[17] Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J Approx Theory, 2005, 134: 257--266
[18] Takahashi W. Nonlinear Functional Analysis. Yokohama: Yokohama Publishers, 2000 |