数学物理学报 ›› 2011, Vol. 31 ›› Issue (3): 720-728.

• 论文 • 上一篇    下一篇

平衡问题和不动点问题的公共元的混杂算法

高兴慧1, 周海云2, 高改良2   

  1. 1.延安大学 数学与计算机科学学院 陕西延安 716000|2.石家庄军械工程学院数学系 石家庄 050003
  • 收稿日期:2009-11-17 修回日期:2010-10-20 出版日期:2011-06-25 发布日期:2011-06-25
  • 基金资助:

    国家自然科学基金(10771050)和陕西省教育厅科研计划项目(11JK0486)资助

Hybrid Algorithms of Common Elements for Equilibrium Problems and Fixed Point Problems

 GAO Xing-Hui1, ZHOU Hai-Yun2, GAO Gai-Liang2   

  1. 1.College of Mathematics and Computer Science, Yan'an University, Shaanxi Yan'an 716000|2.Department of Mathematics, Shijiazhuang Mechanical Engineering College, |Shijiazhuang 050003
  • Received:2009-11-17 Revised:2010-10-20 Online:2011-06-25 Published:2011-06-25
  • Supported by:

    国家自然科学基金(10771050)和陕西省教育厅科研计划项目(11JK0486)资助

摘要:

In strictly convex and uniformly smooth Banach spaces with the K-K property,
a new hybrid projection method is proposed to approximate common elements for the set
of common fixed points of two quasi-$\phi$-nonexpansive mappings
and the set of solutions of an equilibrium problem. A strong convergence theorem of the common elements
is proved by using generalized projection operator, the K-K property and
other analysis techniques. The results of this paper improve and extend recent
some relative results.在严格凸的具有K-K性质的一致光滑Banach空间中, 设计了一种新混杂算法用以逼近两个Φ -非扩张映像的公共不动点集和一个平衡问题解集的公共元素, 并利用广义投影算子和K-K性质等技巧证明了该算法的强收敛性. 所得结果是近期相关结果的改进与推广.

关键词: 混杂算法, 平衡问题, Φ -非扩张映像

Abstract:

In strictly convex and uniformly smooth Banach spaces with the K-K property, a new hybrid projection method is proposed to approximate common elements for the set of common fixed points of two quasi-Φ-nonexpansive mappings and the set of solutions of an equilibrium problem. A strong convergence theorem of the common elements is proved by using generalized projection operator, the K-K property and other analysis techniques. The results of this paper improve and extend recent some relative results.

Key words: Hybrid algorithms, Equilibrium problem, Quasi-Φ-nonexpansive mapping.

中图分类号: 

  • 47H05