数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1542-1554.

• 论文 • 上一篇    下一篇

一类非线性抛物最优控制问题的有限元误差估计

付红斐1|芮洪兴2   

  1. 1.中国石油大学 数学与计算科学学院 山东东营 257061|2.山东大学数学学院 济南 250100
  • 收稿日期:2008-08-27 修回日期:2009-10-16 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    国家基础研究项目(2007CB814906)和国家自然科学基金(10771124)资助

Error Estimates for the Finite Element Approximation of Nonlinear Parabolic Optimal Control Problems

 FU Hong-Fei1, RUI Hong-Xing2   

  1. 1.School of Mathematics and Computational Science, China University of Petroleum, Shandong Dongying 257061|2.School of Mathematics, Shandong University, Jinan 250100
  • Received:2008-08-27 Revised:2009-10-16 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家基础研究项目(2007CB814906)和国家自然科学基金(10771124)资助

摘要:

该文对一类非线性抛物最优控制问题给出了有限元逼近格式, 并讨论了两种不同类型的控制约束集. 文中对状态和伴随状态变量采用了线性连续函数离散, 而控制变量则由分片常函数近似. 得到了控制和状态逼近的先验误差估计O(hU+h+k), 这里hUh 分别表示控制和状态的空间网格步长, k 表示时间步长. 数值试验表明了算法的有效性.

关键词: 有限元逼近, 非线性抛物最优控制, 先验误差估计

Abstract:

In this paper, the finite element approximation to a class of nonlinear optimal control problems with two different kinds of control constrained sets is investigated, where the state and co-state variables are discretized by piecewise linear continuous functions and the control variable is approximated by piecewise constant functions. Some a priori error estimates are derived for both control and state approximations.
It is proven that these approximations have convergence order O(hU+h+k), where hU and h are the spatial mesh-sizes for control and state, respectively, and k is the time increment. Numerical examples are given to show the efficiency of the present scheme.

Key words: Finite element approximation, Nonlinear optimal control, Priori error estimates

中图分类号: 

  • 49J20