[1] Cayley A. On the Theory of Analytic Forms Called Trees. Collected Mathematical Papers of Arthur Cayley. Cambridge: Cambridge University Press, 1890
[2] Vinberg E B. Convex homogeneous cones. Transl Moscow Math Soc, 1963, 12: 340--403
[3] Koszul J L. Domaines bornés homogènes et orbites de groupes de transformations affines. Bull Soc Math France, 1961, 89: 515--533
[4] Burde D. Left-symmetric algebras or pre-Lie algebras in geometry and physics. Cent Eur J Math, 2006, 4: 323--357
[5] Etingof P, Soloviev A. Quantization of geometric classical r-matrix. Math Res Lett, 1999, 6: 223--228
[6] Etingof P, Schedler T, Soloviev A. Set-theoretical solutions to the quantum Yang-Baxter equations. Duke Math J, 1999, 100: 169--209
[7] Golubschik I Z, Sokolov V V. Generalized operator Yang-Baxter equations, integrable ODES and nonassociative algebras. J Nonlinear Math Phys, 2000, 7: 184--197
[8] Medina Perea A. Flat left invariant connections adapted to the automorphism structure of a Lie group. J Differential Geom, 1981, 16: 445--474
[9] Milnor J. On fundamental groups of complete affinely flat manifolds. Advances in Math, 1977, 25: 178--187
[10] Segal D. The structure of complete left-symmetric algebras. Math Annalen, 1992, 293: 569--578
[11] Grunewald F, Segal D. On affine crystallographic groups. J Differential Geom, 1994, 40: 563--594
[12] 白述伟, 孟道骥. 左对称代数(I). 南开大学学报(自然科学), 1995, 28(4): 72--77
[13] 孟道骥, 白述伟. 左对称代数(II). 南开大学学报(自然科学), 1996, 29(1): 2--6
[14] 白承铭, 孟道骥. 左对称代数的若干性质. 南开大学学报(自然科学), 1997, 30(2): 1--8
[15] 白承铭, 孟道骥. 双对称代数. 科学通报, 1997, 42(15): 1606--1610
[16] Bai C M, Meng D J. On the realization of transitive Novikov algebras. J Phys, 2001, 34A: 3363--3372
[17] Bai C M, Meng D J. The realizations of non-transitive Novikov algebras. J Phys, 2001, 34A: 6435--6442
[18] Bai C M, Meng D J. A Lie algebraic approach to Novikov algebras. J Geom Phys, 2003, 45: 218--230
[19] Gerstenhaber M. The cohomology structure of an associative ring. Ann of Math, 1963, 2: 267--288
[20] Chapoton F, Livernet M. Pre-Lie algebras and the rooted trees operad. Internat Math Res, 2001, 8: 395--408
[21] Vasil'eva E A, Mikhal A A, ëv. Free left-symmetric superalgebras. Fundam Prikl Mat, 1996, 2: 611--613
[22] Wang X D. Left-symmetric structures on Lie superalgebras. Northeastern Mathematical Joural, 1999, 15: 209--216
[23] 张永正, 刘文德. 模李超代数. 北京: 科学出版社, 2004
[24] 张永正. 素特征域上的有限维的cartan型李超代数. 科学通报(中文版), 1997, 42(6): 676--679; 英文版, 1997, 42(9): 720--724
[25] 张永正. 无限维cartan型李超代数的模的混合积. 数学年刊, 1997, 18A(6): 725--732
[26] Zhang Q C, Zhang Y Z. Derivation algebras of the modular Lie superalgebras W and S of cartan type. Acta Math Scientica, 2000, 20(1): 137--144
[27] 张永正, 王颖, 张庆成. 模李超代数研究的若干进展. 数学进展, 2002, 31(6): 495--502
[28] 张庆成, 张永正. 结合代数的同调与上同调. 东北师大学报自然科学版, 2000, 32(1): 111--115
[29] Shen G Y. Translative isomorphisms and left-symmetric structures on W(m, n). J Algebgra, 1996, 184: 575--583
[30] 沈光宇. 阶化Cartan型李代数的阶化模(I) -模的混合积. 中国科学(A辑), 1986, 29(3): 255--264
[31] Baues O. Left-symmetric algebras for gl(n). Trans Amer Math Soc, 1999, 351: 2979--2996
|