[1] Hastie T, Tibshirani R. Varying-coefficient models (with discussion). Journal of the Royal Statistical Society, 1993, 55B: 757--796
[2] Engle R F, Granger W J, Rice J, et al. Semiparametric estimates of the relation between weather and electricity sales. J Amer Statist Assoc, 1986, 80: 310--319
[3] Zhang W, Lee S, Song X. Local polynomial fitting in semivarying-coefficient model. J Multivar Anal, 2002, 82: 166--188
[4] Zhou X, You J. Wavelet estimation in varying coefficient partially linear regression models. Statist Probab Lett, 2004, 68: 91--104
[5] Xia Y, Zhang W, Tong H. Efficient estimation for semivarying-coefficient models. Biometrika, 2004, 91: 661--681
[6] Ahmad I, Leelahanon S, Li Q. Efficient estimation of semiparametric partially linear varying coefficient model. Ann Statist, 2005, 33: 258--283
[7] Fan J, Huang T. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 2005, 11: 1031--1057
[8] You J, Chen G. Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model. J Multivar Anal, 2006, 97: 324--341
[9] Ali M, Abu-Salih M. On estimation of missing observations in linear regression models. Sankhya Indian J Statist, 1988, 50: 404--411
[10] Cheng P. Nonparametric estimation of mean functionals with data missing at random. J Amer Statist Assoc, 1990, 89: 81--87
[11] Chu C, Cheng P. Nonparametric regression estimation with missing data. J Statist Planning Inference, 1995, 48: 85--99
[12] Wang Q, Linton O, Hardle W. Semiparametric regression analysis with missing response at random.J Amer Statist Assoc, 2004, 99: 334--345
[13] Wang Q, Sun Z. Estimation in partially linear models with missing responses at random.J Multivar Anal, 2007, 98: 1470--1493
[14] Little R, Rubin D. Statistical Analysis with Missing Data. New York: John Wiley, 2002
[15] Liang H, Wang S, Carroll R. Partially linear models with missing response variables and error-prone covariates. Biometrika, 2007, 94: 185--198
[16] Mack Y, Silverman B W. Weak and strong uniform consistency of kernel regression estimates. Z Wahrsch Verw Gebiete, 1982, 61: 405--415
[17] Xia Y, Li W. On the estimation and testing of functional-coefficient linear models. Statist Sinica, 1999, 9: 737--757
|