[1] 杨乐. 值分布及其新研究.北京:科学出版社,1982
[2] 何育赞, 萧修治. 代数体函数与常微分方程. 北京:科学出版社, 1998
[3] Frei M. Uber die subnormalen losungen der differentialgleichung \omega''+{\rm e}^{-z}\omega'+{\rm (konst.)}\omega=0. Comment Math Helv, 1962, 36: 1--8
[4] Ozawa M. On a solution of \omega''+{\rm e}^{-z}\omega'+(az+b)\omega=0. Kodai Math J,1980, 3: 295--309
[5] Amemiya I, Ozawa M. Non-existence of finite order solutions of \omega''+{\rm e}^{-z}\omega'+Q(z)\omega=0. Hokkaido Math J,1981, 10: 1--17
[6] Gundersen G. On the question of whether f''+{\rm e}^{-z}f'+B(z)f=0 can admit a solution f \not\equiv 0 of finite order. Proc R S E, 1986, 102A: 9--17
[7] Langley J K. On complex oscillation and a problem of Ozawa. Kodai Math J, 1986, 9: 430--439
[8] 陈宗煊.关于微分方程f''+{\rm e}^{-z}f'+B(z)f=0的增长性.中国科学(A辑), 2001, 31(9): 775--784
[9] 李纯红, 黄小军. 一类高阶线性微分方程解的增长性.数学物理学报, 2003, 23A(5): 613--618
[10] Chen Zongxuan, Shon Kwangho. On the growth of solutions of a class of higher order differential equations. Acta Mathematica Scientia, 2004, 24B(1): 52--60
[11] Chen Zongxuan. On the hyper order of solutions of higher order differential equations. Chin Ann Math, 2003, 24B(4): 501--508
[12] Gundersen G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J London Math Soc, 1988, 37(2): 88--104
[13] 涂金, 陈宗煊. 一类高阶微分方程解的增长性.数学物理学报, 2008, 28A(4): 670--678 |