数学物理学报 ›› 2010, Vol. 30 ›› Issue (4): 1030-1041.

• 论文 • 上一篇    下一篇

 一类高阶整函数系数微分方程解的增长级、下级与超级

陈玉   

  1. 江西师范大学 数学与信息科学学院 南昌 330022
  • 收稿日期:2007-12-15 修回日期:2009-08-10 出版日期:2010-07-25 发布日期:2010-07-25
  • 基金资助:

    江西省教育厅科学技术研究项目(赣教技字[2007] 135号)和江西省自然科学基金(2008GQS0053)资助

The Order, and |Lower Order of Growth, and the Hyper-order of a Class of Higher Order Linear Differential Equations with Entire

 CHEN Yu   

  1. Institute of Mathematics and Informatics, Jiangxi Normal University, Nanchang 330022
  • Received:2007-12-15 Revised:2009-08-10 Online:2010-07-25 Published:2010-07-25
  • Supported by:

    江西省教育厅科学技术研究项目(赣教技字[2007] 135号)和江西省自然科学基金(2008GQS0053)资助

摘要:

该文研究了一类高阶整函数系数微分方程解的增长性, 对方程f{(k)}+Ak-1(z)eak-1z, f (k-1)+… + A0(z)ea0zf =0 与方程f (k)+(Ak-1}(z)eak-1z +Dk-1(z)f (k-1)+…+(A0(z)ea0z+D0(z)f =0 中aj(0≤ j ≤ k-1)幅角主值不全相等的情形, 得到了解的增长级、下级与超级的精确估计.

关键词: 微分方程, 整函数, 增长级与下级, 超级

Abstract:

This paper investigates the properties of growth of solutions of a class of higher order linear differential equations with entire coefficients, obtains some precise estimates of the order and lower order of growth and the hyper-order of the solutions of equations f{(k)}+Ak-1(z)eak-1z, f (k-1)+… + A0(z)ea0zf =0 and f (k)+(Ak-1}(z)eak-1z +Dk-1(z)f (k-1)+…+(A0(z)ea0z+D0(z)f =0  when the arguments of aj, 0≤ j ≤ k-1, are  not all equal.

Key words: Differential equation, Entire function, Order and lower order of growth, Hyper-order

中图分类号: 

  • 30D35