[1] Marcus C, Westervelt R. Stability of analog neural network with delay. Phys Rev A, 1989, 39(1): 347--359
[2] Arik S. Stability analysis of delayed neural networks with time delay. IEEE Trans Circuits Syst, 2000, 47: 1089--1092
[3] Liao X, Chen G, Sanchez E. Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Networks, 2002, 15: 855--866
[4] Sun C, Zhang K, Fei S, Feng C. On exponential stability of delayed neural networks with a general class of activation functions. Physics letters A, 2002, 298: 122--132
[5] 刘炳文, 黄立宏. 时滞细胞神经网络概周期解的存在性与全局指数稳定性. 数学物理学报, 2007, 27A(6): 1082--1088
[6] Chu T, Wang Z, Wang L. Exponential convergence estimates for neural networks with multiple delays. IEEE Transactions on Circuits and Systems I, 2002, 49(12): 1829--1832
[7] Ensari T, Arik S. Global stability analysis of neural networks with multiple time varying delays. IEEE Trans Auto Control, 2005, 50(11): 1781--1784
[8] Liao X, Li C. An LMI approach to asymptotical stability of multi-delayed neural networks. Physica D, 2005, 200: 139--155
[9] Lu H, Shen R, Chung F. Absolute exponential stability of a class of recurrent neural networks with multiple and variable delays. Theoretical Computer Science, 2005, 344(2): 103--119
[10] Wang B, Zhong S, Liu X. Asymptotical stability criterion on neural networks with multiple time-varying delays. Applied Mathematics and Computation, 2008, 195(2): 809--818
[11] 沈轶, 赵勇, 廖晓昕, 杨叔子. 具有可变时滞的 Hopfield 型随机神经网络的指数稳定性. 数学物理学报, 2000, 20(3): 400--404
[12] Liao X, Mao X. Exponential stability and instability of stochastic neural networks, stochast. Anal Appl, 1996, 14(2): 165--185
[13] Liao X, Mao X. Stability of stochastic neural networks. Neural Parallel Sci Comput, 1996, 4(2): 205--224
[14] Mao X. Stability of stochastic delay neural networks. Journal of the Franklin Institute, 2001, 338: 481--495
[15] Joy M. Exponential Stability of Stochastic Retarded Neural Networks. Bruges: Belgium, 2005: 27--29
[16] 罗琦, 邓飞其,包俊东. 随机分布参数型Hopfield时滞神经网络的稳定性. 数学物理学报, 2006, 26A(6): 968--977
[17] Wan L, Sun J. Mean square exponential stability of stochastic delayed Hopfield neural networks. Physics Letters A, 2005, 343(4): 306-318
[18] Sun Y, Cao J. Pth moment exponential stability of stochastic recurrent neural networks with time-varying delays. Nonlinear Analysis: Real World Applications, 2007, 8: 1171--1185
[19] Huang K, Cao J. Exponential stability analysis of uncertain stochastic neural networks with multiple delays. Nonlinear Analysis:Real World Applications, 2007, 8: 646--653
[20] Hou Y, Liao T, Yan J. Global asymptotic stability for a class of nonlinear neural networks with multiple delays. Nonlinear Analysis, 2007, 67: 3037--3040
[21] Huang C, He Y, Chen P. Dynamic analysis of stochastic recurrent neural networks. Neural Process Letters, 2008, 27: 267--276
[22] 俞立. 鲁棒控制: 线性矩阵不等式处理方法. 北京: 清华大学出版社, 2002
[23] Lü J, Yu X, Chen G, Cheng D. Characterizing the synchronizability of small-world dynamical networks. IEEE Trans Circuits Syst I, 2004, 51(4): 787--796
[24] Lü J, Chen G. A time-varying complex dynamical network models and its controlled synchronization criteria. IEEE Transactions on Automatic Control, 2005, 50(6): 841--846
[25] Zhou J, Lu J, Lü J. Adaptive synchronization of an uncertain complex dynamical network. IEEE Transactions on Automatic Control, 2006, 51(4): 652--656
[26] Zhou J, Lu J, Lü J. Pinning adaptive synchronization of a general complex dynamical network. Automatica, 2008, 44(4): 996--1003 |