[1]Mjolhus E. On the modulational instability of hydromagnetic waves parallel to the magnetic field.J Plasma Phys,1976,16:321-334
[2]Mio K, Ogino T, Minami K, Takeda S. Modified nonlinear Schr [AKo¨D]dinger equation for Alfvén waves propagating along the magnetic fields in cold plasma.J Ph ys Soc Japan, 1976, 41:265-271
[3]Deissler R J,Brand H R. Generation of counter propagating nonlinear inte racting traveling waves by localized noise. Phy Lett A, 1977,130:29 3-296
[4]Kundu A. LandauLifshitz and higherorder nonlinear systems gauge gene rat ed from nonlinear Schrodinger type equations.J Math Phys,1984, 25:3433-3436
[5]Tsutsumi M, Fukuda I. On solution of the derivative nonlinear Schr [AKo¨D ]dinger equation II. Funkial Ekvac, 1981, 24:85-94
[6]Haken H. SynergeticsAn introduction. New York: Springer, 1987
[7]Duan J, Holmes P, Titi E S. Global existence theory for a generalized Gin zburgLandau equation. Nonlinearity, 1992, 5:1303-1314
[8]Duan J, Holmes P. On the Cauchy problem of generalized GinzburgLandau e quation. Nonlinear Anal, TMA, 1994, 22:1033-1040
[9]Guo Boling, Gao Hongjun. Finite dimensional behavior of generalized Ginzb urgLandau equation. Progress in Natural Science, 1995,5(6): 6 49-610
[10]Saarloos W Van, Hohenberg P C. Fronts, Pulses, Sources and Sinks in Generalized Complex GinzburgLandau Equation.Phys D, 1992,56:303-367
[11]Guo Boling, Wu Yaping. Orbital stability of solitary waves of nonlinear derivative Schr [AKo¨D]dinger equations.J Diff Equ, 1995,123: 35-55
[12]张卫国. 几类具5次强非线性项的发展方程的显式精确孤波解.应用数学学报,1998,21(2):249-256
[13]Ablowitz M J,Ramani A and Segur H.A connection between nonlinear evolu tio n equations and ordinary differential equations of Ptype II.J Math Phys,1980,21(5):1006-1015
[14]Chen H H, Lee Y C, Liu C S. Integrability of nonlinear Hamiltonian sy stems by inverse scattering method. Phys Scr, 1979, 20: 490-492
[15]Gerdjikov V S, Ivanov I. The quadratic bundle of general form and the no nlinear evolution equation II. Bulg J Phys, 1983, 10(2): 130-143
[16]Rangwala A A, Rao J A. Backlund transformations, soliton soluti ons and wa ve functions of KaupNewell and WadatiKonnoLchikawa systems. J Math Phys, 1 990, 31(5): 1126-1132
|