摘要:
该文主要研究形如Δ((Δ\+nu)\+\{p-1*\}) = f(|x|, u, |u|)u\+\{-β\},\ x∈R\+2的奇异非线性多调和方程在R\+2上的正整体解,此处p>1,β≥0是常数,n是自然数,f: [AKR-]\-+×R\-+×[AKR-]\-+→R\-+是 一个连续函数,ξ\+\{α*\}:=|ξ|\+\{α-1\}ξ,ξ∈R,α>0 . 证明了这种解 u必无界且其渐进阶(当n→∞时u作为无穷大量的阶)不低于|x|\+\{2n\}log|x| ,给 出了该方程具有无穷多个其渐进阶刚好为 |x|\+\{2n\}log|x| 的正整体解的充分与充分必要条件. 这些结论可以推广到更一般的方程中去.
中图分类号: