数学物理学报 ›› 2003, Vol. 23 ›› Issue (5): 627-640.

• 论文 • 上一篇    

关于奇异非线性多调和方程的正整体解

 吴炯圻   

  1. 漳州师范学院数学系 漳州 363000
  • 出版日期:2003-10-25 发布日期:2003-10-25
  • 基金资助:

    福建省自然科学基金资助项目(F00018),福建省教育厅资助项目(JA02247)

On Positive Entire Solutions to Singular Nonlinear PolyHarmonic Equations in R^2

Wu Jiong-Qi   

  1. 漳州师范学院数学系 漳州 363000
  • Online:2003-10-25 Published:2003-10-25
  • Supported by:

    福建省自然科学基金资助项目(F00018),福建省教育厅资助项目(JA02247)

摘要:

该文主要研究形如Δ((Δ\+nu)\+\{p-1*\}) = f(|x|, u, |u|)u\+\{-β\},\ x∈R\+2的奇异非线性多调和方程在R\+2上的正整体解,此处p>1,β≥0是常数,n是自然数,f:  [AKR-]\-+×R\-+×[AKR-]\-+→R\-+是 一个连续函数,ξ\+\{α*\}:=|ξ|\+\{α-1\}ξ,ξ∈R,α>0 . 证明了这种解 u必无界且其渐进阶(当n→∞时u作为无穷大量的阶)不低于|x|\+\{2n\}log|x| ,给 出了该方程具有无穷多个其渐进阶刚好为  |x|\+\{2n\}log|x| 的正整体解的充分与充分必要条件. 这些结论可以推广到更一般的方程中去.

关键词: 非线性多调和方程;奇异方程;正整体解;不动点定理

Abstract:

In this paper, two dimensional singular nonlinear poly harmonic equation of the form Δ((Δ\+nu)\+\{p-1*\}) = f(|x|, u, |u|)u\+\{-β\},\ x∈R\+2 is  considered, where \$p>1, β≥0, n\$ is an integer \$(n≥1),ξ\+\{α*\}:=|ξ|\+\{α-1\}ξ,ξ∈R,α>0.\$   and \$f: [AKR-]\-+×R\-+×[AKR-]\-+→R\-+\$ is a continuous function. It is shown that any positive radially symmet ric entire solution grows at least as fast as positive constant multiples of \$|x|\+\{2n\}(\%log\%|x|)\+\{1/(p-1)\}\$ as \$|x|→∞\$. It is given that some sufficient conditions and nec essary conditions for the existence of infinitely many positive symmetric entire  solutions which are asymptotic to positive constant multiples of \$ |x|\+\{2n\}(log|x|)\+\{1/(p-1)\}\$ as \$|x|→∞\$. The results can be extended to certain equations of more genera l form, e.g.Δ((Δ\+nu)\+\{p-1*\})=f(|x|, u, |u|,|u\+2u|,\:,|u|\+\{2n-1\})u\+\{-β\}, x∈R^2.

Key words: Nonlinear poly harmonic equation, Positive entire solution, Radial symmetric solution, Singular equation, Fixed point theorem

中图分类号: 

  • 35J60