[1] |
王媛媛, 李德宜, 等. 正三棱柱的 Buffon 投针问题. 数学杂志, 2013, 33A(5): 887-890
|
|
Wang Y Y, Li D Y, et al. Buffon needle problem in regula tri-prism. J of Math, 2013, 33A(5): 887-890
|
[2] |
谢凤繁, 胡适耕. E3 中有界网格的 Buffon 问题. 数学物理学报, 2011, 31A(2): 410-414
|
|
Xie F F, Hu S G. On Buffon problem for bounded lattices in E3. Acta Math Sci, 2011, 31A(2): 410-414
|
[3] |
Xie F F, Li D Y. On generalized Buffon needle problem for lattices. Acta Math Sci, 2011, 31B(1): 303-308
|
[4] |
顾鹤荣. Buffon 投针问题解的几何解释及其在球面上的推广. 华东师范大学学报 (自然科学版), 1987, 2: 6-13
|
|
Gu H R. A geometric interpretation of the Buffon needle problem and its extension to a sphere. J of East China Nosmal University (Natural Science), 1987, 2: 6-13
|
[5] |
邹明田, 李寿贵, 陈莉莉. 一类特殊网格的几何概率. 数学杂志, 2014, 34(2): 374-378
|
|
Zou M T, Li S G, Chen L L. A special class of the geometric probability. J of Math, 2014, 34(2): 374-378
|
[6] |
肖艳. 正八边形与正方形组成网格的几何概率. 科技信息, 2011, 3: 453-454
|
|
Xiao Y. The geometric probability that a regular octagon and a square form a grid. Science & Technology Information, 2011, 3: 453-454
|
[7] |
赵江甫, 谢鹏, 蒋君. 超平面偶与凸体相交的几何概率. 应用数学, 2016, 29(1): 233-238
|
|
Zhao J F, Xie P, Jiang J. Geometric probability for pairs of hyperplanes intersecting with a convex body. Math Appl, 2016, 29(1): 233-238
|
[8] |
赵江甫. En 中的几何概率及其极值. 山东大学学报 (理学版), 2021, 56(4): 76-85
|
|
Zhao J F. Geometric probability and its extremes in En. Journal of Shandong University (Natural Science), 2021, 56(4): 76-85
|
[9] |
赵江甫. Rn 中超平面偶与特殊凸体相交的几何概率问题. 厦门理工学院学报, 2020, 28(1): 89-95
|
|
Zhao J F. Geometric probability of pairs of hyperplanes intersecting with special bodies in Rn. Journal of Xiamen University of Technology. 2020, 28(1): 89-95
|
[10] |
赵江甫. Rn 中线性子空间束与凸体相交的几何概率. 数学物理学报, 2021, 41A(3): 770-782
|
|
Zhao J F. Geometric probability of subspaces intersecting with a convex bady in Rn. Acta Math Sci, 2021, 41A(3): 770-782
|
[11] |
Santaló L A. Integral Geometry and Geometric Probability. London: Addition-Wesley, 1976
|
[12] |
Hadwiger H, Streit F. ¨Uber Wahrscheinlichkeiten r¨aumlicher B¨undelungserscheinungen. Monatshefte f¨ur Mathematik, 1970, 74(1): 30-40
|
[13] |
曾春娜, 姜德烁. 关于凸集平均曲率积分的注记. 重庆师范大学学报 (自然科学版), 2013, 30(5): 62-65
|
|
Zeng C N, Jiang D S. Some notes on mean curvature integral of convex sets. Journal of Chongqing Normal University (Natural Science), 2013, 30(5): 62-65
|
[14] |
Santaló L A. On the mean curvatures of a flattened convex body. Rev Fac Sci of Istanbul University, 1956, 21: 189-194
|
[15] |
Streit F. On multiple integral geometric integrals and their applications to probability theory. Canadian Journal of Mathematics, 1970, 22(1): 151-163
|
[16] |
Miles R. The various aggregates of random polygons determined by random lines in a plane. Advances in Mathematics, 1973, 10(2), 256-290
|
[17] |
Hadwiger H. Vorlesungen ¨uber inhalt, oberfl che und isoperimetrie. Berlin: Addition-Springer, 2013
|