数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 619-629.

• • 上一篇    下一篇

Rn 中凸集的汇聚概率

严彤(),邹都*()   

  1. 武汉科技大学理学院 武汉 430081
  • 收稿日期:2023-05-22 修回日期:2024-10-15 出版日期:2025-04-26 发布日期:2025-04-09
  • 通讯作者: 邹都 E-mail:2771704373@qq.com;zoudumath@wust.edu.cn
  • 作者简介:严彤,E-mail:2771704373@qq.com
  • 基金资助:
    国家自然科学基金(12171378);湖北省自然科学基金(2020CFA079)

The Aggregation Probability of Convex Sets in Rn

Tong Yan(),Du Zou*()   

  1. college of science, Wuhan University of Science and Technology, Wuhan 430081
  • Received:2023-05-22 Revised:2024-10-15 Online:2025-04-26 Published:2025-04-09
  • Contact: Du Zou E-mail:2771704373@qq.com;zoudumath@wust.edu.cn
  • Supported by:
    NSFC(12171378);Hubei Natural Science Foundation(2020CFA079)

摘要:

利用 Rn 中凸体与平坦凸体两者平均曲率积分之间的关系, 给出 h 个与凸体 K 相交的线性子空间彼此在 K 内相交的几何概率. 在此基础上得到了在凸体 K 内有一个半径为 r 而和所有随机平面有公共点的球存在的概率, 并进一步讨论了一维和二维情形下点的汇聚概率.

关键词: 平均曲率积分, 平行凸集, 几何概率, 均质积分, Minkowski 和

Abstract:

Based on the relationship between the average curvature integrals of the convex and flat convex bodies in Rn, the geometric probability that h linear subspaces intersecting the convex body K within K is given. On this basis, the probability of the existence of a sphere with a radius of r and a common point with all random planes in the convex body K is given. Furthermore, the convergence probabilities of the points in the one-dimensional and two-dimensional cases are discussed.

Key words: mean curvature integral, parallel convex sets, geometric probability, homogeneous integration, minkowski addition

中图分类号: 

  • O168.5