[1] |
Helton J W, Nie J. Semidefinite representation of convex sets. Mathematical Programming, 2010, 122(1): 21-64
|
[2] |
Lasserre J B. Moments, Positive Polynomials and Their Applications. London: Imperial College Press, 2009
|
[3] |
Ahmadi A A, Parrilo P A. A convex polynomial that is not sos-convex. Mathematical Programming, 2012, 135(1): 275-292
|
[4] |
Ahmadi A A, Parrilo P A. A complete characterization of the gap between convexity and SOS-convexity. SIAM Journal on Optimization, 2013, 23(2): 811-833
|
[5] |
Jeyakumar V, Li G, Vicente-Pérez J. Robust SOS-convex polynomial optimization problems: Exact SDP relaxations. Optimization Letters, 2015, 9(1): 1-18
|
[6] |
Jeyakumar V, Li G. A new class of alternative theorems for SOS-convex inequalities and robust optimization. Applicable Analysis, 2015, 94(1): 56-74
|
[7] |
Chuong T D. Linear matrix inequality conditions and duality for a class of robust multiobjective convex polynomial programs. SIAM Journal on Optimization, 2018, 28(3): 2466-2488
|
[8] |
Jiao L, Lee J H. Finding efficient solutions for multicriteria optimization problems with SOS-convex polynomials. Taiwanese Journal of Mathematics, 2019, 23(6): 1535-1550
|
[9] |
Sun X K, Tan W, Teo, K L. Characterizing a class of robust vector polynomial optimization via sum of squares conditions. Journal of Optimization Theory and Applications, 2023, 197(2): 737-764
|
[10] |
Jeyakumar V, Li G. Exact SDP relaxations for classes of nonlinear semidefinite programming problems. Operations Research Letters, 2012, 40(6): 529-536
|
[11] |
Lee J H, Jiao L. Solving fractional multicriteria optimization problems with sum of squares convex polynomial data. Journal of Optimization Theory and Applications, 2018, 176(2): 428-455
|
[12] |
Dinkelbach W. On nonlinear fractional programming. Management Science, 1967, 13: 492-498
|
[13] |
Ben-Tal A, Nemirovski A. Robust optimization-methodology and applications. Mathematical Programming, 2002, 92(3): 453-480
|
[14] |
Ben-Tal A, Ghaoui L E, Nemirovski A. Robust Optimization. Princeton: Princeton University Press, 2009
|
[15] |
Gabrel V, Murat C, Thiele A. Recent advances in robust optimization: an overview. European Journal of Operational Research, 2014, 235(3): 471-483
|
[16] |
叶冬平, 方东辉. 鲁棒复合优化问题的 Lagrange 对偶. 数学物理学报, 2020, 40A(4): 1095-1107
|
|
Ye D P, Fang D H. Lagrange dualities for robust composite optimization problems. Acta Math Sci, 2020, 40A(4): 1095-1107
|
[17] |
刘娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶. 应用数学和力学, 2021, 42(6): 595-601
|
|
Liu J, Long X J. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems. Applied Mathematics and Mechanics, 2021, 42(6): 595-601
|
[18] |
黄嘉译, 孙祥凯. 一类两阶段自适应鲁棒多目标规划的对偶性刻画. 数学物理学报, 2024, 44A(1): 185-194
|
|
Huang J Y, Sun X K. Duality characterizations for a class of two-stage adjustable robust multiobjective programming. Acta Mathematica Scientia, 2024, 44A(1): 185-194
|
[19] |
Chuong T D, Jeyakumar V. Tight SDP relaxations for a class of robust SOS-convex polynomial programs with out the Slater condition. Journal of Convex Analysis, 2018, 25(4): 1159-1182
|