[1] |
Andrade I, Marques M A, Menezes R. Flat and bent branes in Born-Infeld-like scalar field models. Eur Phys J C, 2024, 84(1): Article 6
|
[2] |
Bogomol'nyi E B. The stability of classical solutions. Sov J Nucl Phys, 1976, 24(4): 449-454
|
[3] |
Bolognesi S, Chatterjee C C, Gudnason S B, et al. Vortex zero modes, large flux limit and Ambjørn-Nielsen-Olesen magnetic instabilities. J High Energy Phys, 2014, 2014(10): 1-21
|
[4] |
Born M. Modified field equations with a finite radius of the electron. Nature, 1933, 132: Article 282
|
[5] |
Born M. On the quantum theory of the electromagnetic field. Proc R Soc Lond A, 1934, 143(849): 410-437
|
[6] |
Born M, Infeld L. Foundation of the new field theory. Nature, 1933, 132: 1004
|
[7] |
Born M, Infeld L. Foundation of the new field theory. Proc R Soc Lond A, 1934, 144(852): 425-451
|
[8] |
Callan Jr C G, Maldacena J M. Brane dynamics from the Born-Infeld action. Nucl Phys B, 1998, 513(1/2): 198-212
|
[9] |
Cao L, Chen S, Yang Y. Domain wall solitons arising in classical gauge field theories. Commun Math Phys, 2019, 369(1): 317-349
doi: 10.1007/s00220-019-03468-7
|
[10] |
Chen X, Elliott C M, Tang Q. Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy Soc Edin A, 1994, 124(6): 1075-1088
|
[11] |
Chen G, Ma T P, N'Diaye A T, et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat Commun, 2013, 4(1): 1-6
|
[12] |
Chen G, Zhu J, Quesada A, et al. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films. Phys Rev Lett, 2013, 110(17): 177204
|
[13] |
Chen S, Hastings S, McLeod J B, et al. A nonlinear elliptic equation arising from gauge field theory and cosmology. Proc R Soc Lond A, 1994, 446(1982): 453-478
|
[14] |
Dodd R K, Eilbeck J C, Gibbon J D, et al. Solitons and Nonlinear Wave Equations. London: Academic Press, 1982
|
[15] |
Faddeev L D, Korepin V E. Quantum theory of solitons. Phys Rep, 1978, 42(1): 1-87
|
[16] |
Gibbons G W. Born-Infeld particles and Dirichlet -branes. Nucl Phys B, 1998, 514(3): 603-639
|
[17] |
Hu Y, Koutrolikos K. Nonlinear   supersymmetry and 3D supersymmetric Born-Infeld theory. Nucl Phys B, 2022, 984: Article 115970
|
[18] |
Hubert A, Schäfer R. Magnetic Domains:The Analysis of Magnetic Microstructures. Berlin:Springer, 2009
|
[19] |
Jaffe A, Taubes C H. Vortices and Monopoles. Boston: Birkhäuser, 1980
|
[20] |
Landau L, Lifshitz E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion, 1935, 8: 153-169
|
[21] |
Li Z D, Hu Y C, He P B, et al. Domain wall dynamics in magnetic nanotubes driven by an external magnetic field. Chin Phys B, 2018, 27(7): 077505
|
[22] |
Liouville J. Sur l'êquation aux différences partielles                 . J Math Pures Appl, 1853, 18: 71-72
|
[23] |
Liu L, Chen W X, Wang R Q, et al. Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls. Chin Phys B, 2018, 27(4): Article 047201
|
[24] |
Manton N S. Five vortex equations. J Phys A, 2017, 50(12): 125403
|
[25] |
Nielsen H B, Olesen P. Vortex line models for dual strings. Nucl Phys B, 1973, 61: 45-61
|
[26] |
Rajaraman R. Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam: North-Holland, 1989
|
[27] |
Spaldin N A. Magnetic Materials:Fundamentals and Applications. Cambridge: Cambridge University Press, 2010
|
[28] |
Tseytlin A A. Born-Infeld Action, Supersymmetry and String Theory. Singapore: World Scientific, 2000
|
[29] |
Yang Y. Classical solutions in the Born-Infeld theory. Proc R Soc Lond A, 2000, 456(1995): 615-640
|
[30] |
Yang Y. Dyonically charged black holes arising in generalized Born-Infeld theory of electromagnetism. Ann Phys, 2022, 443: Article 168996
|
[31] |
Yang Y. Electromagnetic asymmetry, relegation of curvature singularities of charged black holes, and cosmological equations of state in view of the Born-Infeld theory. Class Quant Grav, 2022, 39(19): Article 195007
|
[32] |
Yang Y. Dyonic matter equations, exact point-source solutions, and charged black holes in generalized Born-Infeld theory. Phys Rev D, 2023, 107(8): Article 085007
|