数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 554-566.
收稿日期:
2023-10-31
修回日期:
2024-10-15
出版日期:
2025-04-26
发布日期:
2025-04-09
通讯作者:
余志恒
E-mail:yuzhiheng9@163.com.
基金资助:
Lin Li1,Lingling Liu2,Zhiheng Yu3,*()
Received:
2023-10-31
Revised:
2024-10-15
Online:
2025-04-26
Published:
2025-04-09
Contact:
Zhiheng Yu
E-mail:yuzhiheng9@163.com.
Supported by:
摘要:
该文将讨论平面多项式的正规形理论. 作者利用多项式代数理论求出相应变量的最小不可约分解, 并通过全局共轭得到一类平面三次多项式的光滑分类. 作者的定理还应用于讨论平面迭代根与嵌入流问题.
中图分类号:
李林,刘玲伶,余志恒. 平面三次多项式的分类[J]. 数学物理学报, 2025, 45(2): 554-566.
Lin Li,Lingling Liu,Zhiheng Yu. On Classification of Planar Cubic Polynomials[J]. Acta mathematica scientia,Series A, 2025, 45(2): 554-566.
[1] | Arango J, Gómez A. Diffeomorphisms as time one maps. Aequationes Math, 2002, 64: 304-314 |
[2] | Arcet B, Giné J, Romanovski V. Linearizability of planar polynomial Hamiltonian systems. Nonlinear Anal-Real, 2022, 63: Article 103422 |
[3] | Arnold V I, Yu S I. Ordinary Differential Equations. Berlin: Springer-Verlag, 1988 |
[4] | Ashkenazi M, Chow S. Normal forms near critical points for differential equations and maps. IEEE Trans Circuits Systems, 1988, 35: 850-862 |
[5] | Becker T, Weispfenning V. Gröbner Bases:A Computational Approach to Commutative Algebra. New York: Springer, 1993 |
[6] | Belitskii G R. Equivalence and normal forms of germs of smooth mappings. Russ Math Surv, 1978, 33: 107-177 |
[7] | Bronstein I U, Kopanskii A Y. Smooth Invariant Manifolds and Normal Forms. Singapore: World Scientific, 1994 |
[8] | Buchberger B. Ein Algorithmus Zum Auffinden Der Basiselemente Des Restklassenringes Nach Einem Nulldimensional Polynomideal. Austria: Universität Innsbruck, 1965 |
[9] | Chen G. Further reduction of normal forms for vector fields. Numerical Algorithms, 2001, 27: 1-33 |
[10] | Chen G, Dora J. Further reductions of normal forms for dynamical systems. J Differ Equ, 2000, 166: 79-106 |
[11] | Chen G, Dora J. Normal forms for differentiable maps near a fixed point. Numerical Algorithms, 1999, 22: 213-230 |
[12] | Chen G, Dora J. An algorithm for computing a new normal form for dynamical systems. J Symbolic Computation, 2000, 29: 393-418 |
[13] | Chen X, Shi Y, Zhang W. Planar quadratic degree-preserving maps and their iteration. Result Math, 2009, 55: 39-63 |
[14] | Chen G, Wang D, Yang J. Unique normal forms for Hopf-zero vector fields. C R Acad Sci Paris, 2003, 336: 345-348 |
[15] | Cuong L, Doan T, Siegmund S. A sternberg theorem for nonautonomous differential equations. J Dyn Diff Equ, 2019, 31: 1279-1299 |
[16] | Gelfand M, Kapranov M M, Zelevinsky A V. Discriminants, Resultants and Multidimensional Determinant. Boston: Birkhäuser, 1994 |
[17] | Gramchev T, Walcher S. Normal forms of maps: formal and algebraic aspects. Acta Appl Math, 2005, 87: 123-146 |
[18] | Guo L, Ren Z. Polynomial normal forms for some germs of nonstrongly 1-resonant diffeomorphisms. Int J Bifurcation and Chaos, 2015, 25: Article 1550174 |
[19] | Han M. Conditions for a diffeomorphism to be embedded in a Cr flow. Acta Math Sinica, 1988, 4: 111-123 |
[20] | Han Z, Zhang Z, Zheng Y. New normal for nonlinear system (II)-controllable form. Acta Math Sci, 1993, 13B(2): 139-146 |
[21] | Ichikawa F. Finitely determined singularities of formal vector fields. Invent Math, 1982, 66: 199-214 |
[22] | Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. New York: Cambridge University Press, 1995 |
[23] | Kuczma M. Functional Equations in a Single Variable. Warszawa: Polish Scientific Publishers, 1968 |
[24] | Kuczma M, Choczewski B, Ger R. Iterative Functional Equations. Cambridge: Cambridge University Press, 1990 |
[25] | Lam P F. Embedding a differentiable homeomorphism in a flow subject to a regularity condition on the derivatives of the positive transition homeomorphisms. J Differ Equ, 1978, 30: 31-40 |
[26] | Li J, Kou L, Wang D, Zhang W. Unique normal form and the associated coefficients for a class of three-dimensional nilpotent vector fields. Int J Bifurcation and Chaos, 2017, 27(14): 1750224 |
[27] | 李伟固. 正规形理论及其应用. 北京: 科学出版社, 2000 |
Li W G. Normal Form Theory and Its Application. Beijing: Science Press, 2000 | |
[28] | Li W, Llibre J, Wu H. Polynomial and linearized normal forms for almost periodic differential systems. Discrete and Continuous Dynamical Systems, 2015, 36(1): 345-360 |
[29] | Liu L, Tang Y, Zhang W. Versal unfolding of homogeneous cubic degenerate centers in strong monodromic family. J Differ Equ, 2021, 283: 136-162 |
[30] | Rayskin V. Hölder linearization. J Differ Equ, 1998, 147: 271-284 |
[31] | Ren Z, Xia L, Yang J. On classification of the Poincaré type maps on R3. Bull Sci Math, 2015, 139(5): 582-598 |
[32] | Ren Z, Yang J, Yu F. On conjugating equivalence of 0-resonant diffeomorphisms on R3. Int J Bifurcation and Chaos, 2013, 23(6): Article 1350100 |
[33] | Ren Z, Yan S, Yang J. Finite determinacy and polynomial normal forms for diffeomorphisms near a strongly 1-resonant fixed point. J Math Anal Appl, 2014, 413(1): 476-481 |
[34] | Rodrigues H M, Sola-Morales J. Linearization of class C1 for contractions on Banach spaces. J Differ Equ, 2004, 201: 351-382 |
[35] | Romanovski V, Shafer D. The Center and Cyclicity Problems:A Computational Algebra Approach. Boston: Birkhäuser, 2009 |
[36] | Strien S V. Smooth linearization of hyperbolic fixed points without resonance conditions. J Differ Equ, 1990, 85(1): 66-90 |
[37] | Takens F. Singularities of vector fields. Publ Math de lÍnstit des Hautes Etudes Sci, 1974, 43: 47-100 |
[38] | Takens F. Normal forms for certain singularities of vector fields. Ann Inst Fourier, 1973, 23(2): 163-195 |
[39] | Turqui A, Dali D. Normal forms of planar polynomial differential systems. Qual Theory Dyn Syst, 2019, 18: 11-33 |
[40] | Yang J. Polynomial normal forms for vector fields on R3. Duke Math J, 2001, 106(1): 1-18 |
[41] | Yu Z, Yang L, Zhang W. Discussion on polynomials having polynomial iterative roots. J Symbolic Comput, 2012, 47(10): 1154-1162 |
[1] | 王晓敏, 吴德玉. 换位子的共轭算子[J]. 数学物理学报, 2024, 44(6): 1426-1432. |
[2] | 李姣芬, 孔鲁源, 宋佳铄, 文娅琼. 特征提取中一类矩阵迹函数极值问题的黎曼优化算法[J]. 数学物理学报, 2024, 44(4): 1012-1036. |
[3] | 简金宝, 代钰, 尹江华. 分裂可行性问题的一个惯性共轭梯度投影法[J]. 数学物理学报, 2024, 44(4): 1066-1079. |
[4] | 蔡宇, 周光辉. 一种 WYL 型谱共轭梯度法的全局收敛性[J]. 数学物理学报, 2024, 44(1): 173-184. |
[5] | 刘鹏杰, 吴彦强, 邵枫, 张艳, 邵虎. 两个带重启方向的改进 HS 型共轭梯度法[J]. 数学物理学报, 2023, 43(2): 570-580. |
[6] | 闫文文,许美珍. 边界条件含有特征参数的四阶微分算子的自伴性和特征值的依赖性[J]. 数学物理学报, 2022, 42(3): 671-693. |
[7] | 唐肖,李林. 非特征端点条件下PM函数的迭代根[J]. 数学物理学报, 2022, 42(2): 557-569. |
[8] | 袁功林,吴宇伦,PhamHongtruong. 基于非单调线搜索的HS-DY形共轭梯度方法及在图像恢复中的应用[J]. 数学物理学报, 2022, 42(2): 605-620. |
[9] | 江羡珍,廖伟,简金宝,毋晓迪. 一个带重启步的改进PRP型谱共轭梯度法[J]. 数学物理学报, 2022, 42(1): 216-227. |
[10] | 朱志斌,耿远航. 一个改进的WYL型三项共轭梯度法[J]. 数学物理学报, 2021, 41(6): 1871-1879. |
[11] | 马国栋. 强Wolfe线搜索下的修正PRP和HS共轭梯度法[J]. 数学物理学报, 2021, 41(3): 837-847. |
[12] | 刘月园,王凯,秦树娟,李姣芬. 列正交约束下广义Sylvester方程极小化问题的有效算法[J]. 数学物理学报, 2021, 41(2): 479-495. |
[13] | 杨柳,邓醉茶. 退化抛物型方程的一个初值反演问题[J]. 数学物理学报, 2020, 40(4): 891-903. |
[14] | 余志恒,龚小兵. 多项式型迭代方程的多项式解[J]. 数学物理学报, 2019, 39(6): 1352-1364. |
[15] | 李向利,师娟娟,董晓亮. 一类修正的非单调谱共轭梯度法及其在非负矩阵分解中的应用[J]. 数学物理学报, 2018, 38(5): 954-962. |
|