[1] |
杨丕文. 四元数分析与偏微分方程. 北京: 科学出版社, 2009
|
|
Yang P W. Quaternion Analysis and Partial Differential Equations. Beijing: Science Press, 2009
|
[2] |
Brack F, Delanghe R, Sommen F. Clifford Analysis. Boston: Pitman Books Limits, 1982
|
[3] |
路见可. 解析函数边值问题. 武汉: 武汉大学出版社, 2004
|
|
Lu J K. Analytical Function Boundary Value Problems. Wuhan: Wuhan University, 2004
|
[4] |
Kandmanov R M. Bochner-Martinelli integrals and their applications. Sciences Siberia Press, 1992, 100: 209-213
|
[5] |
黄沙. Clifford 分析中奇异积分方程的 Poincaré-Bertrand 公式. 数学学报, 1998, 41(1) : 119-126
doi: 10.12386/A1998sxxb0045
|
|
Huang S. Poincaré-Bertrand transformation formulae of the singular integrals in Clifford analysis. Acta Mathematica Sinica, 1998, 41(1): 119-126
doi: 10.12386/A1998sxxb0045
|
[6] |
罗纬宇. Clifford 分析中正则函数边值问题及奇异积分方程. 武汉: 武汉大学出版社, 2014
|
|
Luo W Y. The regularization function boundary value problem and singular integral equation in Clifford analysis. Wuhan: Wuhan University, 2014
|
[7] |
Huang S, Qiao Y Y, Wen G C. Real and Complex Clifford Analysis. New York: Springer, 2006
|
[8] |
Xu Q H, Ma T, Yin Z. Functional Analysis. Beijing: Higher Education Press, 2017
|
[9] |
Gilbert R P, Buchanan J L. First order elliptic systems, a function theoretic approach. Mathematics in Science Engineering, 1983, 163: Art 281
|
[10] |
Rankin R A. Real and Complex Analysis. By W. Rudin. Pp. 412. 84s. 1966. (McGraw-Hill, New York.). The Mathematical Gazette, 1968, 52(382): 412
|
[11] |
Luo W Y, Du J. Generalized Cauchy theorem in Clifford analysis and boundary value problems for regular functions. Advances in Applied Clifford Algebras, 2017, 27: 2531-2583
|
[12] |
Zhang Z X, Du J Y. On certain Riemann boundary value problems and singular integral equations in Clifford analysis. Chinese Journal of Contemporary Mathematics, 2001, 22(3): 237-244
|
[13] |
Du J Y, Zhang Z X. A Cauchy's integral formula for functions with values in a universal Clifford algebral and its applications. Complex Variables, 2002, 47(10): 915-928
|
[14] |
Du J Y, Xu N, Zhang Z X. Boundary behavior of Cauchy-type integrals in Clifford analysis. Acta Math Sci, 2009, 29(1): 210-224
|