数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 408-417.

• • 上一篇    下一篇

一类双调和映照型偏微分方程组正则性研究

刘安淇1(),余婷1,*(),向长林2()   

  1. 1三峡大学数理学院 湖北宜昌 443002
    2三峡大学三峡数学研究中心 湖北宜昌 443002
  • 收稿日期:2024-07-22 修回日期:2024-12-16 出版日期:2025-04-26 发布日期:2025-04-09
  • 通讯作者: 余婷 E-mail:anqi.liu@ctgu.edu.cn;yuting@ctgu.edu.cn;changlin.xiang@ctgu.edu.cn
  • 作者简介:刘安淇,E-mail:anqi.liu@ctgu.edu.cn;|向长林,E-mail:changlin.xiang@ctgu.edu.cn
  • 基金资助:
    国家自然科学基金(12271296);湖北省自然科学基金杰出青年项目(2024AFA061)

Research on the Regularity of a Class of Biharmonic Map-Type Partial Differential Equation Systems

Anqi Liu1(),Ting Yu1,*(),Changlin Xiang2()   

  1. 1College of Mathematics and Physics, China Three Gorges University, Hubei Yichang 443002
    22Three Gorges Mathematical Research Center, China Three Gorges University, Hubei Yichang 443002
  • Received:2024-07-22 Revised:2024-12-16 Online:2025-04-26 Published:2025-04-09
  • Contact: Ting Yu E-mail:anqi.liu@ctgu.edu.cn;yuting@ctgu.edu.cn;changlin.xiang@ctgu.edu.cn
  • Supported by:
    NSFC(12271296);SFC of Hubei province(2024AFA061)

摘要:

双调和映照是一类重要的几何映照, 但是满足的偏微分方程非常复杂, 导致其正则性研究很困难. 为了研究这一类问题, 该文考虑一类双调和映照型四阶椭圆偏微分方程组

Δ2u=Q1(x,u,u,2u)+divQ2(x,u,u,2u),xB1,

其中 B1={xRn:|x|<1}, n4, Q1,Q2 满足关于 u2u 的临界增长条件. 则在适当的小性条件假设下, 该文证明该方程组的解均具有 Hölder 正则性, 从而推广了文献中的相关结果. 该结果有助于加深对双调和映照结构的理解与正则性理论的研究.

关键词: 双调和映照, 临界非线性椭圆方程组, H?lder 正则性, 反向 Poincaré 不等式, 衰减估计

Abstract:

Biharmonic mappings are an important class of geometric mappings, but the partial differential equations that are satisfied are very complex, making their regularity study difficult. In order to study this class of problems, in this note we consider a class of biharmonic map-type fourth order elliptic partial differential equation system

Δ2u=Q1(x,u,u,2u)+divQ2(x,u,u,2u)in B1,

where B1={xRn:|x|<1} with n4, and Q1,Q2 satisfy critical growth conditions with respect to u and 2u. Then, under suitable smallness assumption, this note proves that the solutions of this system of equations all have Hölder regularity, thus generalising related results in the literature. This result helps to deepen the understanding of the structure of biharmonic mappings and the research on the regularity theory.

Key words: biharmonic mappings, elliptic systems with critical nonlinearity, H?lder regularity, reverse Poincaré inequality, decay estimate

中图分类号: 

  • O175.25