[1] |
Ai W, Yin H. Neck analysis of extrinsic polyharmonic maps. Ann Global Anal Geom, 2017, 52(2): 129-156
|
[2] |
Angelsberg G, Pumberger D. A regularity result for polyharmonic maps with higher integrability. Ann Global Anal Geom, 2009, 35(1): 63-81
|
[3] |
Breiner C, Lamm T. Quantitative stratification and higher regularity for biharmonic maps. Manuscripta Math, 2015, 148(3/4): 379-398
|
[4] |
Chang S Y, Wang L, Yang P. A regularity theory of biharmonic maps. Comm Pure Appl Math, 1999, 52(9): 1113-1137
|
[5] |
Cheeger J, Naber A. Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent Math, 2013, 191: 321-339
|
[6] |
Cheeger J, Naber A. Quantitative stratification and the regularity of harmonic maps and minimal currents. Comm Pure Appl Math, 2013, 66(6): 965-990
|
[7] |
Chen Y, Zhu M. Bubbling analysis for extrinsic biharmonic maps from general Riemannian 4-manifolds. Sci China Math, 2023, 66(3): 581-600
|
[8] |
Chen Y, Zhu M. Doubling annulus Pohozaev type identity and applications to approximate biharmonic maps. Calc Var Partial Differential Equations, 2024, 63(1): Article 15
|
[9] |
Frehse J. A discontinuous solution of a mildly nonlinear elliptic system. Math Z, 1973, 134(3): 229-230
|
[10] |
Gastel A, Scheven C. Regularity of polyharmonic maps in the critical dimension. Comm Anal Geom, 2009, 17(2): 185-226
|
[11] |
Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton: Princeton University Press, 1983
|
[12] |
Guo C Y, Jiang G C, Xiang C L, Zheng G F. Optimal higher regularity for biharmonic maps via quantitative stratification. arXiv:2401.11177
|
[13] |
He W, Jiang R. The regularity of a semilinear elliptic system with quadratic growth of gradient. J Funct Anal, 2019, 276(4): 1294-1312
|
[14] |
何毓, 向长林, 郑高峰. 基于量化分层的内蕴双调和映照最优正则性. 中国科学: 数学, 2025, 55: 1-34
|
|
He Y, Xiang C L, Zheng G F. Optimal regularity for intrinsic biharmonic maps via quantitative stratification. Sci Sin Math, 2025, 55: 1-34
|
[15] |
Lamm T, Rivière T. Conservation laws for fourth order systems in four dimensions. Comm Partial Differential Equations, 2008, 33: 245-262
|
[16] |
Lin F H. Gradient estimates and blow-up analysis for stationary harmonic maps. Ann of Math, 1999, 149(3): 785-829
|
[17] |
Liu L, Yin H. Neck analysis for biharmonic maps. Math Z, 2016, 283(3/4): 807-834
|
[18] |
Luckhaus S. Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ Math J, 1988, 37(2): 349-367
|
[19] |
Millot V, Pegon M, Schikorra A. Partial regularity for fractional harmonic maps into spheres. Arch Ration Mech Anal, 2021, 242: 747-825
|
[20] |
Montaldo S, Oniciuc C. A short survey on biharmonic maps between Riemannian manifolds. Rev Un Mat Argentina, 2006, 47(2): 1-22
|
[21] |
Moser R. A variational problem pertaining to biharmonic maps. Comm Partial Differential Equations, 2008, 33(7-9): 1654-1689
|
[22] |
Naber A, Valtorta D. Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann of Math, 2017, 185: 131-227
|
[23] |
Rivière T. Everywhere discontinuous harmonic maps into spheres. Acta Math, 1995, 175(2): 197-226
|
[24] |
Sacks J, Uhlenbeck K. The existence of minimal immersions of 2-spheres. Ann of Math, 1981, 113(1): 1-24
|
[25] |
Scheven C. Dimension reduction for the singular set of biharmonic maps. Adv Cal Var, 2008, 1(1): 53-91
|
[26] |
Scheven C. An optimal partial regularity result for minimizers of an intrinsically defined second-order functional. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26(5): 1585-1605
|
[27] |
Schoen R, Uhlenbeck K. A regularity theory for harmonic maps. J Differential Geom, 1982, 17: 307-335
|
[28] |
Simon L. Theorems on the Regularity and Singularity of Minimal Surfaces and Harmonic Maps. Tokyo: Springer, 1996: 115-150
|
[29] |
Strzelecki P. On biharmonic maps and their generalizations. Calc Var Partial Differential Equations, 2003, 18: 401-432
|
[30] |
Strzelecki P, Zatorska-Goldstein A. On a nonlinear fourth order elliptic system with critical growth in first order derivatives. Adv Cal Var, 2008, 1(2): 205-222
|
[31] |
Wang C Y. Remarks on biharmonic maps into spheres. Calc Var Partial Differential Equations, 2004, 21: 221-242
|
[32] |
Wang C Y. Biharmonic maps from R4 into a Riemannian manifold. Math Z, 2004, 247: 65-87
|
[33] |
Wang C Y. Stationary biharmonic maps from Rm into a Riemannian manifold. Comm Pure Appl Math, 2004, 57: 419-444
|